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Why ‘scaffolding’ is the wrong metaphor1 
There is an important difference between mathematical representations and writing in natural 
language.  It is an essential feature of mathematical representations that they invite actions of a 
disciplined sort that encode rules of rigour.  In Euclidean plane geometry2, there is a short list of 
actions that one is explicitly permitted to do to a drawn figure (the first three postulates).  To this 
explicit list may be added other moves that are implicit in the practice, such as superposition.  
Sticking to this list of implicitly and explicitly permitted actions is part of what it means to work 
rigorously in Euclid’s system.  (The rest of the specification of rigour in Euclid books I-IV concerns the 
interaction between the diagram and the accompanying text.3)  Similarly, the difference between 
number-words4 in natural language (whether written or spoken) and numerals in a system of 
arithmetic is that the arithmetic numerical system has rules for the manipulation of its symbols that 
(mostly) ensure that the reckoning is accurate.  With Hindu-Arabic numerals, the algorithms for 
adding, subtracting, multiplying and dividing large numbers work even in the hands of someone who 
does not know how or why they work.  The task of tracking all the single-digit calculations and 
recombining them correctly has been off-loaded to the numeral system and its associated practices 
(such as long multiplication and long division).  High-school algebra has the same feature.  In 
addition to rules for forming expressions, algebra at this elementary level has rules for transforming 
them (such as the rules for multiplying out brackets or gathering terms).  These transformation rules 
embody a good deal of the rigour of the practice.5  This is not true of natural language (whether 
spoken or written).  Grasping that “Mary and John are in the kitchen” means the same as “Mary is in 
the kitchen and John is in the kitchen” is part of knowing the language, but understanding such 
equivalences does very little to aid inference and calculation.  In a slogan: we do things with words, 
but we do (disciplined, rule-governed) things to mathematical representations.  We extend their 
baselines, we join their points with lines, we gather their terms and factorise their expressions.  In 
using these representations, we offload much of the cognitive load of calculation and inference.   

Explaining this in more detail will supply examples and embellishment to Richard Menary’s (2015) 
argument for his claim that enculturation does not merely refine and ripen our natural mathematical 
abilities, but transforms them and embeds them in a world of representations, practices and 
artefacts without which they could not function.  More precisely, we will add detail to the arguments 

                                                             
1 I should like to record my gratitude to the philosophy department at the Bristol University for hosting the 
meeting where these ideas were first presented, to Catarina Dutilh Novaes encouraging me to write them up, 
and to two anonymous and diligent referees who saw this paper through three rounds of significant 
improvements. 
2 That is, the system expounded in Euclid books I-IV.   
3 See Manders (2008) for a comprehensive analysis. 
4 Note that a language with precise number-words that are not limited in size is already a significant cognitive 
tool.  According to Ferreirós, “With counting, the imprecise innate grasp of cardinality is joined by a notion of 
order (ordinality), which refines the notion of cardinality into a precise concept, with the aid of specific words, 
so that they combine to obtain the number concept.” (2016, p. 186).  By ‘mathematical representations’ in this 
paper is meant inscriptions, mental images, computer models, etc. in addition to the words for counting 
numbers that one has simply as a speaker of a language that expresses the counting-number concept.   
5 Though not all of it.  Following the expression-transformation rules of the language of high school algebra is 
not quite a perfect guarantee of rigour, because they can’t always prevent you from accidentally dividing by 
zero or from dividing an inequality by a negative number. 



that Menary offers in sections five and six of his paper (Menary 2015).  As a philosopher of 
mathematical practices, I have nothing to say directly about brains.6  The contribution of this paper 
to Menary’s argument is that mathematics must be enculturated because mathematical reason is 
encoded in and offloaded to external representations to a much greater degree than other 
discourses.7   

For this reason, ‘scaffolding’ is a poor metaphor for the cognitive assistance that we get from 
mathematical representations.  First, we need to see where this scaffolding metaphor came from, 
and in which respects it is and is not accurate.  As we will see, it has never been a very good 
metaphor, even for the purpose it had when it was first introduced in educational psychology.  Nor is 
it especially apt for expressing scaffolding theory in cognitive science.  Despite its shortcomings, it is 
now so entrenched that it is best regarded as a dead metaphor.  There is no point in campaigning for 
its removal.  The value of assessing it as a metaphor is to throw into relief some of the particular 
advantages of mathematical representations.   

Scaffolding—the origins of a metaphor 
The scaffolding metaphor originates in an educational psychology paper from 1976, ‘The role of 
tutoring in problem solving’ by Wood, Bruner & Ross.8  Just as cognitive science, at a corresponding 
stage of its development, modelled the human mind as an isolated system that receives inputs from 
and sends outputs to its environment but remains separate from it, so educational psychology 
treated children as isolated units.  This paper by Wood et al. was part of a critical reaction to that 
approach:  

Discussions of problem solving or skill acquisition are usually premised on the assumption 
that the learner is alone and unassisted.  If the social context is taken into account, it is 
usually treated as an instance of modelling and imitation.  But the intervention of a tutor 
may involve much more than this.  More often than not, it involves a kind of "scaffolding" 
process that enables a child or novice to solve a problem, carry out a task or achieve a goal 
which would be beyond his unassisted efforts.  This scaffolding consists essentially of the 
adult “controlling” those elements of the task that are initially beyond the learner's capacity, 
thus permitting him to concentrate upon and complete only those elements that are within 
his range of competence. (Wood, Bruner & Ross, 1976 p. 2) 

Note that the presence of scaffolding is signalled by success in some task that would at first be 
beyond the bare, isolated individual.  The most accurate element in the scaffolding metaphor here is 
that the tutor’s assistance is temporary.  As the child achieves mastery, the scaffolding is removed.   

Note also that the tutor is active in helping the child to learn.  Wood et al. offer six functions that the 
‘scaffolding’ tutor performs while the child attempts the set task, including direction maintenance, 
marking critical features and frustration control.  At every stage, the tutor seeks to minimise her 
interventions, so she constantly monitors and reacts to the child’s propensity to wander off task, 

                                                             
6 Doing philosophy of mathematical practices means treating mathematics as a human activity rather than a 
body of established knowledge.  Whether or not this is a replacement for, a challenge to or a friend of longer 
established approaches to the philosophy of mathematics is matter of dispute.  See Mancosu (2008) p. 18. 
7 This does not entail that other discourses are not enculturated.   
8 See (Stone 1998) for the history of the scaffolding metaphor from its origin to 1998.  See also following 
footnote.   



overlook critical features and get frustrated.  In this sense, ‘scaffolding’ was always a poor metaphor 
for what Wood et al. had in mind.  Literal scaffolding is inert and indifferent.  It does not vary the 
support it offers precisely according to need.  Given that it is not an especially apt metaphor, one 
might wonder why it was chosen.  It may be that the scaffolding metaphor suggested itself as a 
development of constructivist approaches to educational psychology.  If the child constructs the 
edifice of its own knowledge, then ‘scaffolding’ is a natural way of extending the architectural-
construction metaphor to include the role of the tutor in facilitating (but not contributing to) that 
cognitive building-work.  Whatever its shortcomings, the scaffolding metaphor in this educational 
context denotes something precise, namely the teacher’s six functions.  It captures the temporary 
nature of the support and the constructivist idea that the principal agent is the child, not the 
teacher.   

The word ‘scaffolding’ seems to have entered the discourse of cognitive science just over twenty 
years later, thanks to Andy Clark: 

We may call an action ‘scaffolded’ to the extent that it relies on some kind of external 
support.  Such support could come from the use of tools, or the knowledge and skills of 
others; that is to say, scaffolding (as I shall use the term) denotes a broad class of physical, 
cognitive and social augmentations—augmentations which allow us to achieve some goal 
which would otherwise be beyond us. Simple examples include the use of a compass and 
pencil to draw a perfect circle, the role of other crew members in enabling a ship's pilot to 
steer a course and the infant’s ability to take its first steps only while suspended in the 
enabling grip of its parents.  (Andy Clark, 1998)9 

On this definition, almost everything we do is scaffolded action, except the most elementary bodily 
functions including singing, whistling and silent cogitation.  Notice that the scaffolding metaphor is 
sustained in the word ‘support’.  Even when we confine ourselves to epistemic actions10, the scope 
of the term ‘scaffolded action’ is broad.  Turning to an early reviewer of Clark’s book:  

                                                             
9 Menary and others routinely present Clark as the originator of this usage in cognitive science.  This is 
corroborated by Google Scholar searches: prior to 1976 (the year of Wood et al.), scaffolding is not mentioned 
in educational theory or developmental psychology.  From 1976 to 1998, there are many references to 
scaffolding in educational theory but none in cognitive science.  After 1998, scaffolding appears in papers in 
cognitive science, mostly with direct citations of Clark’s use.  See (Stone, 1998) for a history of the term in 
educational theory from Wood et al. onwards.  Writing in 1998, the year of Clark’s paper, Stone makes no 
mention of cognitive science.  Clark does not cite Wood et al., but there is a common ancestor in Vygotsky.  
Wood, Bruner and Ross do not mention Vygotsky in their article but (as Stone explains) Bruner wrote on 
Vygotsky and in educational psychology the scaffolding metaphor was taken up as a way to articulate 
Vygotsky’s model of teaching as management of the pupil’s zone of proximal development.  The quotation 
from Clark in the present paper is taken from a section in which he discusses Vygotsky with approval as a 
source of his own view.   
10 Epistemic actions are “external actions that an agent performs to change his or her own computational 
state.”  (Kirsh & Maglio, 1994, p. 514).  They elaborate thus, “a physical action whose primary function is to 
improve cognition by: 1. reducing the memory involved in mental computation, that is, space complexity; [or] 
2. reducing the number of steps involved in mental computation, that is, time complexity; [or] 3. reducing the 
probability of error of mental computation, that is, unreliability.  Typical epistemic actions found in everyday 
activities… include familiar memory-saving actions such as… placing a key in a shoe, or tying a string around a 
finger; time-saving actions such as preparing the workplace, for example, partially sorting nuts and bolts 
before beginning an assembly task in order to reduce later search…; and information gathering activities such 



Both these categories, epistemic action and external scaffolding, Clark points out, are 
extremely large: maps, models, tools, language and culture can all act as external 
scaffolding; using any of these pieces of scaffolding, for example, writing one large number 
above another to multiply them with pen on paper, is epistemic action.  In all these cases, 
we act so as to simplify cognitive tasks by “leaning on” the structures in our environment.11   

Here, the metaphor is more explicitly maintained; ‘scaffolding’ means external structures on which 
we lean.  It invokes a temporary structure of spars and planks erected around a building.  It is worth 
pausing to consider this metaphor in the context of cognitive science.  Literal scaffolding is 
immobile—it is vital to its function that it should not move much beneath the feet of the workmen 
standing on it.  It is not open to manipulation.  So long as it does not wobble when you stand on it, it 
has done its job.  The tools and practices that make mathematics possible are nothing like this, as we 
shall see.  Even before we consider mathematical examples, it is clear that much of what Clark would 
regard as cognitive scaffolding is unlike literal scaffolding.  Language and culture, and the assistance 
of crew-mates, can be dynamic and refined.  Scaffolding of the literal sort, in addition to being 
temporary, is strictly speaking separate from the building it abuts.  However close it is, it remains a 
separate structure with a separate function.  In contrast, the principal claim of the extended mind 
hypothesis is that there is a continuity of function between the embodied brain and the 
environmental12 affordances with which it is coupled.  Literal scaffolding does not usually share its 
function with the building it abuts.  As we shall see, there is an intimate back-and-forth between the 
body of the mathematician and the inscriptions of mathematical practices.   

Scaffolding in Clark’s sense is a much broader category than in Wood et al.  In contrast to the 
temporary assistance provided by teachers, much of the scaffolding in Clark’s sense is permanent 
(though not the parental support of the toddler learning to walk).  I will always need a compass to 
draw a circle; even champions at mental arithmetic cannot compute large or complex calculations; 
the pilot will always need a crew; and so on.  On the other hand, the tutor in the experiment 
reported by Wood et al. is not a passive artefact like a compass.   

In Clark’s sense, ‘scaffolding’ is any object (natural or fabricated) or practice that permits us to 
achieve something that we could not manage alone and naked.13  That is not a problem for Clark.  It 
helps his project in cognitive science if almost all human action is ‘scaffolded’ in his sense, because 
he needs to show that pattern-matching neural nets can do everything we can do.  From his point of 
view, the more help they have, the better.  On the other hand, it does mean that the language of 
scaffolding is inapt to explore the variety of kinds of environmental cognitive assistance, and the 
specific advantages of mathematical representations.   

                                                             
as exploring, for example, scouting unfamiliar terrain to help decide where to camp for the night.”  (Op. Cit. 
pp. 514-5). 
11 Chemero, 1998.  Of course, Clark is not responsible for what others have made of his metaphor.  
Nevertheless, Chemero is pertinent because the reception and use of the metaphor by the cognitive science 
and philosophy of mind communities is our target, rather than Clark’s personal take on it.   
12 For the most part, the environmental affordances for mathematics are artefacts, but nothing hangs on this.  
One might use pebbles as counters or draw diagrams in wet sand with a stick.   
13 Naked, because even the most rudimentary clothing is rich in affordances.  With a loincloth, one might carry 
water, signal for help, trap a small animal, bind a wound, etc..   



Menary’s argument and the philosophy of mathematical practices 
The conclusion of Menary’s argument in his (2015) is about brain development.  He argues against 
the view that “we are born with our primary cognitive faculties intact and they simply need to 
mature, or be finetuned by learning mechanisms” (Menary 2015, abstract).  Rather, he claims that, 
“a process of enculturation transforms our basic biological faculties.” (ibid.)—right down to the level 
of brain-structure.  I have nothing to say about brains, but I am interested in Menary’s argument, 
which is indirect and takes a route through the philosophy of mathematical practices.  He offers as 
evidence for his enculturation view of mathematical cognition, “A long period of development, 
learning-driven plasticity, and a cultural environment suffused with practices, symbols, and complex 
social interactions” (ibid.).  If the learning mechanisms for mathematical cognition do no more than 
fine-tune our inborn cognitive faculties, then (he asks) how come it takes so long and involves so 
much that lies outside the brain?  On Menary’s view, the education of a competent human is more a 
matter of establishing dynamic couplings between that person and the inherited cognitive practices 
in the environment.14   

From the point of view of the philosophy of mathematical practices, Menary’s description of 
enculturation sounds entirely familiar: 

Practices govern how we deploy tools, writing systems, number systems, and other kinds of 
representational systems to complete cognitive tasks. These are not simply static vehicles 
that have contents; they are active components embedded in dynamical patterns of cultural 
practice. (p. 4) 

Philosophers of mathematical practices have been making versions of this point for some time.  
Consider ordinary algebraic notation, as learned in secondary school.  This was invented and 
developed to the point where it became an accepted tool of mathematical argument within the 
lifetime of one of its developers, René Descartes (1596-1650).  When he was born, many 
mathematicians were still writing algebraic procedures out in something close to ordinary prose.  
This mathematical prose had ready abbreviations for ‘the thing sought’, ‘square’ and so on, and 
these were eventually replaced by symbols.  The crucial breakthrough, however, was the 
introduction of brackets.15  Then, the same quantity could be written in two ways (that is to say, 
brackets can be multiplied out, or conversely terms can be gathered).  At first, the manipulation of 
these new symbols was regarded as a useful calculating aid, but such manipulations quickly (that is, 
in a couple of decades) gained the status of proof-procedures.  Mathematicians had invented 
syntactic argumentation, in the sense that the rules for transforming the symbols coincide with most 

                                                             
14 In his 1998 paper, Clark rejects the suggestion that the effect of mathematical training is to reprogram the 
brain (which he believes to be a pattern-completing, massively parallel neural net) so that it starts to behave 
like a serial computer.  ‘Dynamic couplings’ is my gloss on Menary’s paper.   
15 The earliest algebraic notations, such as that of Thomas Harriot, did not use brackets quite as we have them 
now.  The methods that we now recognise as algebraic emerged in Europe from arithmetic with Hindu-Arabic 
numerals, and the work of brackets was done by devices such as arranging expressions in vertical columns as 
in long multiplication.  There is some obscurity over who developed symbolic algebra first, because 
Renaissance mathematicians did not always publish their methods when these contravened the official 
standards of rigour or if they saw a commercial advantage in keeping them secret.  John Wallis was convinced 
that Descartes must have seen and plagiarised Thomas Harriot’s book, because he heard that a French 
nobleman was struck by the similarity between Harriot’s system and Descartes’s.  Wallis’s argument has not 
persuaded many historians.  What matters here, philosophically, is not the origins or details of this story but 
how it ends, that is, with symbolic algebra governed by syntactic rules for transforming equations.   



of the rules of arithmetic.16  When Newton, late in the 17th century, retained the practice of offering 
geometrical proofs for results that he had found algebraically, this made him something of a 
conservative.  For almost everyone else, manipulating symbols according to syntactic rules without 
worrying about what the symbols meant was a perfectly rigorous way of doing mathematics.  With 
the new notation, more of the rigour was offloaded into the symbolism than ever before. 

Turning from the history of mathematics to cognitive science, the first point to note is that the 
actions on algebraic symbols that constitute the process of proof are not actions that one could 
perform on the same content represented by means available to mathematically untrained but 
otherwise cognitively normal adult humans.  To see this, consider the following initial step in a proof 
by George Pólya: 

Define the real numbers 𝑐", 𝑐$, 𝑐%, … 𝑐', … by: 

𝑐"𝑐$𝑐% … 𝑐' = (𝑛 + 1)' 

Then trivially, for any real numbers 𝑎", 𝑎$, 𝑎%, …𝑎',… it follows that:  

/(𝑎"𝑎$ …𝑎')"/'
1

"

=/
(𝑎"𝑐1𝑎$𝑐2 …𝑎'𝑐𝑛)"/'

𝑛 + 1

1

"

 

This is the first step in a proof that consists entirely of re-arrangements and replacements of terms 
(Pólya, 1954, II, 147).  Given the definition of the 𝑐3, this first step is relatively easy for a trained 
mathematical eye to see—provided we have the algebraic notation available to us, for this is a 
mathematical inference made evident and compelling by the notation.  We could write this out in 
mathematical prose, but then the correctness of the equation would be lost in a mass of words.  One 
way to see the importance of the notation is to consider why Pólya used the recursive definition of 

the 𝑐3.  Formally, he might just as well have defined 𝑐' as (𝑛 + 1)
'

𝑛'4"5 , but then Pólya’s ‘trivial’ 

step would not have been as obvious.  Even setting up the simpler left-hand side would baffle many 
people who can easily understand the operation as written here (“Think of an infinite set of real 
numbers and put them in some order.  It doesn’t matter what order.  Now consider the sequence of 
initial segments of that order.  Then form the sum of the geometric means of those initial segments.  
Now hold that thought while we define another infinite set of real numbers…”).  Suppose that a 
reader has understood such a prose equivalent to the expression on the left-hand side of Pólya’s 
equation and further understood the definition of the 𝑐3  without making any use of algebraic 
notation.  The whole equation written in prose would be baffling, and it would be very difficult to 
see why it is true.  Perhaps a Renaissance mathematician who was used to reading mathematical 
arguments in prose might manage it—but it’s worth noting that even this relatively simple 
expression is more complex than anything in Renaissance mathematics.   

In his paper, Menary makes it sound as though the necessity for mathematical notations arises 
simply because proofs are too long and detailed for human working memory:  

Our cognitive capacities cannot cope with long sequences of complex symbols and 
operations on them. This is why we must learn strategies and methods for writing out 
proofs. (2015, p. 16) 

                                                             
16 For a brief account of this development, see Larvor (2005). For exhaustive detail, see Serfati (2005).  



If the length and complexity of the operations were the whole story, then writing them down in 
ordinary prose would solve the problem.  After all, legal arguments can be long and complex.  As 
already noted, an important difference with mathematical notations and diagrams is that they have 
rigour built in to their use.  Sticking to the rules for manipulating the symbols or the diagram goes a 
long way towards guaranteeing the correctness of the result (and in systems that are known to be 
sound, it goes all the way to guaranteeing correctness).  This allows us to offload much of the 
cognitive effort and reduces the work that the human performs to much smaller units.  Instead of 
grasping an entire argument, it is enough to check that each step in a proof or a calculation follows 
the rules of the practice.  Mathematical symbol-systems and diagrammatic practices do not merely 
summarise and represent information efficiently.17  They embody mathematical thinking.  Pólya 
offers the example cited above as a case in which it is easy to check each step of the proof (they are 
all trivial) without understanding why the result is true or how it might have been discovered.  Of 
course, we want understanding as well as correctness.  That is the ultimate point of Pólya’s example.  
Nevertheless, checking the correctness of this proof largely consists in checking that the successive 
versions of the equation are achieved by following the rules for transforming one algebraic 
expression into another.  Broadly speaking, syntactically18 encoded reasoning goes much farther and 
is much more central in mathematics than in other disciplines.   

The essential role of symbol-manipulation in mathematical thinking is the reason why blackboards 
(and now, whiteboards) are central to mathematical material culture.19  One way to see how 
mathematicians think is to watch them teach the next generation.  In teaching, the rules of the 
practices are made explicit and the characteristic techniques and tools exhibited.  Every discipline 
has its signature pedagogy, its teaching occasion when novices learn to think, perform and act as 
members of their profession.  Shulman (who originated the expression ‘signature pedagogy’) offers 
as examples the quasi-Socratic exchanges in law school and the teaching rounds when medical 
students accompany a senior physician visiting patients in a hospital (Shulman 2005, p. 52).  In 
mathematics, the signature pedagogy is the proof performed and discussed on the blackboard.  The 
instructor does not simply print out the proof as a literature professor might write out a poem ready 
for analysis—for if that were the case, the mathematics instructor has no reason not to follow the 
literature professor in switching from the blackboard to pre-prepared slides.20  The mathematics 
instructor has to teach the strategic use of inscription-space, the separation of the blackboard into a 
working area and an area for recording the developing proof.  The students must learn to pay 
attention selectively to the symbols before them, to see possible manipulations and to find a series 
of permitted inscriptions that leads to a solution.  To return to our equation from Pólya, the first 

                                                             
17 In his 1998 paper, Clark lists six kinds of help that ‘scaffolding’ can offer to help humans think, but ensuring 
the correctness of results is not one of them.   
18 Reading ‘syntax’ broadly so that, for example, the rules for adding elements to diagrams in Euclidean 
geometry are the syntax of that system.   
19 The use of a large, wall-hung blackboard seems to have originated at the start of the 19th century.  Before 
that, mathematics was taught and learned on hand-held slates that had the same features (ease of inscription 
and erasure) that endear blackboards to mathematicians (Wylie, 2012).  The significant point here is not how 
or when mathematicians started using blackboards, but rather their reluctance to give them up now that other 
technologies are available.  See Barany & MacKenzie (2014) for a fuller exploration of the place of chalk, 
blackboards and spontaneous inscription in mathematical practice.   
20 See Artemeva & Fox (2011) on the persistence of ‘chalk talk’ as a pedagogical genre in university level 
mathematics teaching.   



thing an experienced reader of mathematics21 does with it is to check that there is no difference in 
the summations.  They both go from one to infinity, so the eye can blank them out and focus only on 
the expressions being summed.  The next thing is to check the indices of the 𝑎3  and the 𝑐3.  They just 
run from 1 to n, so we need pay no more attention to those fiddly little subscripted numbers.  What 

about the exponents?  These are 1 𝑛5  on both sides, so again one can withdraw a little of one’s 
attention.  At this point, one is ready to spot the structural similarities between these expressions 
and the recursive definition of the 𝑐3, and then the equation becomes trivial.  Controlled selective 
attention to inscriptions is essential to mathematics.  It works together with rule-governed symbol 
manipulation to constitute the practice of algebraic argument.  This explains the centrality of 
blackboards and whiteboards in mathematical life.  You cannot manipulate expressions written on 
pre-prepared slides.  You cannot perform the characteristic epistemic actions of mathematics on a 
fixed image. 

Menary gestures towards a third feature of mathematical representations with his observation that, 
“A further issue is how novelty comes about from the ability to abstractly combine symbols and 
functions that apply to the symbols.”  (Op. cit. p. 15).  This has many dimensions.  Sometimes, the 
symbolic expressions are suggestive (as in, for example, the structural similarity between a binomial 
expansion and Leibniz’s general rule for repeated differentiation of a product).22  Sometimes they 
become objects of mathematical enquiry in their own right. 

To see something of the deeper creative role of symbols in mathematics, note that equations 
written in algebraic notation became an object of study almost immediately.  Descartes noticed that 
there is a relationship between the number of positive roots of a polynomial equation with one 
variable and the number of times the sign of the coefficients changes (assuming the equation is 
written in the usual way, with all the terms on one side, and the powers of the variable in 
descending order).  The rule states that the number of positive roots of the equation is either equal 
to the number of sign changes between consecutive non-zero coefficients or is less than it by an 
even number.  For example, 

0 = 𝑥% + 3𝑥$ − 𝑥 − 7 
has just one change of sign (between the 𝑥$ and the 𝑥), so it has precisely one positive root.  There 
is a corresponding rule to work out how many negative roots the equation has.  It is unlikely that this 
would have been discovered before the invention of the new notation.23  It is typical of mathematics 
that tools, notations and processes become objects of mathematical study.   

Descartes’s rule calculates the number of real roots, but some equations have complex roots.  If we 
consider all the solutions to a polynomial equation in one variable, real and complex, it is possible to 
write any such polynomial equation like this: 𝑓(𝑥) = (𝑥 − 𝛼)(𝑥 − 𝛽)(𝑥 − 𝛾)… (𝑥 − 𝜎) where the 
Greek letters are the roots.  The symmetry of this expression is obvious and because multiplication 
of complex numbers is commutative, we could re-order the factors without altering the equation.  

                                                             
21 On the difference between expert and novice readers of mathematics, see Inglis & Alcock (2012). 
22 See (Larvor 2010) pp. 198-201 for Leibniz’s heuristic use of structural similarities between algebraic 
expressions. 
23 Until the end of the 16th century, mathematicians tended to re-arrange equations of a given degree so that 
all the coefficients were positive.  Perhaps a Renaissance mathematician might have seen a general relation 
between the number of roots and the distribution of terms either side of the equation.  After all, al-Khwārizmī 
knew that quadratics in which squares plus numbers equal roots give two results (see Heeffer 2013).  It’s not 
categorically impossible to understand the rule of signs without the symbolism—but no-one did.     



The tool for studying symmetries and permutations is group theory, because the set of permutations 
of some collection of objects is an algebraic group.  For example, if we have three objects, there are 
six ways of shuffling them (including the null-shuffle that leaves them all exactly where they are).  
These six possible shuffles of three objects form an algebraic group, because two shuffles can be 
combined (that is, carried out in sequence) to create a third shuffle.  In the 19th century, Évariste 
Galois (1811-1832) developed an approach to the study of equations based on group-theoretic 
study24 of the permutations of the roots of polynomials that led to (among other things) the solution 
to a long-standing question.  Mathematicians had found general solutions in radicals for polynomials 
of degree two, three, and four—but then the progress stopped.  Galois’s work on the group 
structure of permutations of roots of polynomials resulted in a proof that there can be no solutions 
in radicals for polynomials of degree higher than four.  Here again, a tool has become an object of 
study, and the notation plays an essential role in that process.   

For another example, also from 19th century algebra, consider Cayley graphs of finitely generated 
groups.  This is a way of picturing groups in diagrams that are themselves mathematical objects.  
Each element of the group appears as a node in the graph, and the edges of the graph are the 
generating elements that get you from one node to the next (distinguished by colours and arrows).  
For example, the rotations of an equilateral triangle form a group called C3.  This group has a Cayley 
graph (which is itself a triangle, but this coincidence does not hold generally).  The group can be 
generated by a single twist of the triangle through 120 degrees, and we can represent that 
generating element by the arrowed line.   

 
Figure 1: Cayley Graph of the group C3 

Now think of another operation: flipping the triangle along a vertical axis.  This gives us an even 
simpler group, C2.  If we combine these two groups, we have six ways of rearranging our triangle, 
and these are displayed in this Cayley graph, where the dotted line represents the vertical flip:  

                                                             
24 As is common in mathematics, Galois did not invent Galois theory as it is now taught to undergraduates.  
The group-concept was not isolated and captured in axioms until after his death.  The details of this story do 
not affect the philosophical point, which is that once expressed in modern notation, equations became objects 
of systematic mathematical enquiry.  There is even a glimmer of this in Harriot, who had a classification of 
equations into canonical and non-canonical forms (Harriot 2007).   



 
Figure 2: A Cayley graph for the abelian group C3 x C2 

So far, we have simply found a new way of depicting finitely generated groups.  But these Cayley 
diagrams are directed graphs and as such are the objects of study of another body of mathematics, 
namely, graph theory.  By using theorems from graph theory, mathematicians can prove results 
about Cayley graphs and from these derive information about the groups that the Cayley graphs 
represent.25  The Cayley graphs themselves become objects of epistemic actions—one of the central 
mathematical papers in this area is entitled “Cutting up Graphs” (see Starikova 2010). 

Thus, the novelty arising in this way from mathematical notations is a special advantage of 
mathematical representations.  It is not simply a special case of the fact that in any language there 
are indefinitely many sentences that have never been uttered or written.  Nor is it simply the fact 
that writing something down in an efficient form permits a synoptic overview that sparks new 
insights (this is after all true of a wiring diagram or an architect’s blue-print).  Mathematical symbol 
systems and diagrams can become objects of mathematical enquiry in their own rights, which can 
generate whole new areas of mathematics and the development of powerful techniques for 
resolving the original questions and problems that prompted the enquiry.   

Conclusion  
Consideration of some examples from elementary algebra permitted us to amplify and elaborate 
Menary’s remarks about the uniqueness of the cognitive help that we get from mathematical 
notations and other mathematical representations, and about their role in the generation of new 
mathematics.  Early in this paper, we quoted Chemero’s explication of scaffolding in Clark’s sense, 
“In all these cases, we act so as to simplify cognitive tasks by “leaning on” the structures in our 
environment.”  Consideration of mathematical cases show that this is false.  Mathematical 
representations do not merely simplify cognitive tasks that we might otherwise have faced 
unsuccessfully.  Mathematics is full of cognitive tasks that would not exist without the notations and 
representations that create the environment in which those tasks present themselves.  Calculating 
the Galois group of a polynomial is one such example.  Investigating finitely generated groups 
through their Cayley graphs is another.  Examples could be multiplied endlessly.  We do not simply 
‘lean on’ mathematical notations; we manipulate them according to truth-preserving syntactic rules, 
we offload thinking to them and we think about them mathematically using other diagrams and 

                                                             
25 See (Starikova 2010) for examples of the way that graph theory can supply methods to group theory via 
Cayley graphs.  This relies on the fact that although there are often several graphs for any given finitely 
generated group, all the graphs of a given group share certain properties and these properties can therefore 
be regarded as properties of the generating group.   



notations that allow us to offload some of that thinking.  Some of the most effective applications of 
mathematics are to mathematics itself.   

It is of course open to Menary’s opponents to insist that, however useful the external resources of 
mathematics might be, the thinking is still all in the head.  This raises a point that returns us to the 
short-comings of the scaffolding-metaphor.  The notations and diagrams of mathematics are mostly 
external to the human organism (though it is possible to do some limited mathematics with symbols 
and diagrams imagined inwardly).  But these marks and pictures only become mathematical 
representations when they are part of a practice.  The practice is partly constituted by the rules for 
using the symbols and diagrams, and it is the fact that these rules embody mathematical rigour that 
gives mathematical representations their special utility.  So where are the practices?  Are they inside 
or outside the human organism?  In one sense, they are outside.  They are socially agreed ways of 
doing things with symbols and diagrams.  Someone learning mathematics meets these practices as 
part of the environment and learns them by doing them in public—on a chalkboard or in an exercise 
book.  On the other hand, they have to be internalised, and because mathematics is essentially 
inscribed, internalising its practices includes developing new muscular habits and new ways of 
reading. 

Recent studies emphasise the intimate relationship between the mathematically trained hand, eye 
and brain.  In a series of papers, De Toffoli and Giardino have elaborated a concept of ‘manipulative 
imagination’ to articulate the skill of using diagrams in knot theory and low-dimensional topology.26  
To learn knot theory, it is not enough to read knot diagrams.  One must learn to imagine loops in the 
knot being slid around or flipped across other loops.  Roi Wagner (2017) borrows the term ‘haptic 
vision’ from Deleuze, and characterises it thus:  

Initially, the hand only drew, and the eye only observed the result.  But the emergent Figure 
involves a manipulation or handling without resorting back to the hand, using only the 
associated enriched mode of vision.  Indeed we see in the diagram a sequence of past 
drawings, intended drawings and possible integration of noise into a new drawing—all 
without any actual manual re-drawing.  (Wagner 2017, p. 170) 

‘Haptic vision’ is the result of coupling between hand, eye and brain so intimate that the eye is able 
to do the handling on its own, and ultimately, in some cases, need not have recourse to a physical 
diagram or written expression.  Menary writes:  

Mastery of [mathematical] symbol systems results in changes to cortical circuitry, altering 
function and sensitivity to a new, public, representational system. However, it also results in 
new sensori-motor capacities for manipulating symbols in public space.  

The philosophy of mathematical practice can have nothing to say about exactly what these changes 
to cortical circuitry are.  Nevertheless, mastering mathematical practices does require the 
development of ‘haptic vision’, and that must be somehow registered in the brain.  It’s worth noting 
that Clark mentions just one mathematical example in his 1998 paper.  As always, his aim is to argue 
that a massively parallel pattern-matching machine can do everything that we can do, because that 
(in his opinion) is what we are:  

                                                             
26 De Toffoli, S. & Giardino, V. (2013, 2014, 2016); Giardino (2017).   



…experience with drawing and using Venn diagrams allows us to train a neural network 
which subsequently allows us to manipulate imagined Venn diagrams in our heads.  Such 
imaginative manipulations require a specially trained neural resource to be sure.  But there 
is no reason to suppose that such training results in the installation of a different  kind  of 
computational device.  (1998 p. 166-7) 

The structure and logical order of the brain is a matter for other disciplines.  Nevertheless, it should 
be evident in view of the examples and arguments presented here that the scaffolding metaphor 
radically misdescribes the help that we get from mathematical inscriptions and other elements of 
mathematical material culture (such as cardboard models, computer-generated images and shapes 
drawn in the air).  It does not readily express the to-and-fro between inward cogitation and the 
manipulation of symbols and diagrams, nor the process of internalising shared, materially mediated 
mathematical practices.  Therefore, it begs the question in favour of those who would confine 
thinking to the inside of the skull.  Given Clark’s and Menary’s philosophical aims, this is an 
unfortunate effect of this metaphor’s unbudgeable presence in the literature.   
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