1,512 research outputs found
Feocromocitoma: atualização diagnóstica e terapêutica
Universidade Federal de São Paulo (UNIFESP) Escola Paulista de Medicina Departamento de MedicinaUNIFESP, EPM, Depto. de MedicinaSciEL
Improvement of solar cycle prediction: Plateau of solar axial dipole moment
Aims. We report the small temporal variation of the axial dipole moment near
the solar minimum and its application to the solar cycle prediction by the
surface flux transport (SFT) model. Methods. We measure the axial dipole moment
using the photospheric synoptic magnetogram observed by the Wilcox Solar
Observatory (WSO), the ESA/NASA Solar and Heliospheric Observatory Michelson
Doppler Imager (MDI), and the NASA Solar Dynamics Observatory Helioseismic and
Magnetic Imager (HMI). We also use the surface flux transport model for the
interpretation and prediction of the observed axial dipole moment. Results. We
find that the observed axial dipole moment becomes approximately constant
during the period of several years before each cycle minimum, which we call the
axial dipole moment plateau. The cross-equatorial magnetic flux transport is
found to be small during the period, although the significant number of
sunspots are still emerging. The results indicates that the newly emerged
magnetic flux does not contributes to the build up of the axial dipole moment
near the end of each cycle. This is confirmed by showing that the time
variation of the observed axial dipole moment agrees well with that predicted
by the SFT model without introducing new emergence of magnetic flux. These
results allows us to predict the axial dipole moment in Cycle 24/25 minimum
using the SFT model without introducing new flux emergence. The predicted axial
dipole moment of Cycle 24/25 minimum is 60--80 percent of Cycle 23/24 minimum,
which suggests the amplitude of Cycle 25 even weaker than the current Cycle 24.
Conclusions. The plateau of the solar axial dipole moment is an important
feature for the longer prediction of the solar cycle based on the SFT model.Comment: 5 pages, 3 figures, accepted for publication in A&A Lette
The Association of Polar Faculae with Polar Magnetic Patches Examined with Hinode Observations
The magnetic properties of the Sun's polar faculae are investigated with
spectropolarimetric observations of the north polar region obtained by the
Hinode satellite in 2007 September. Polar faculae are embedded in nearly all
magnetic patches with fluxes greater than Mx, while magnetic patches
without polar faculae dominate in the flux range below Mx. The
faculae are considerably smaller than their parent patches, and single magnetic
patches contain single or multiple faculae. The faculae in general have higher
intrinsic magnetic field strengths than the surrounding regions within their
parent patches. Less than 20% of the total magnetic flux contributed by the
large ( Mx) concentrations, which are known to be modulated by
the solar cycle, is accounted for by the associated polar faculae.Comment: 14 pages, 10 figure
Magnetohydrodynamic Simulations for Studying Solar Flare Trigger Mechanism
In order to understand the flare trigger mechanism, we conducted
three-dimensional magnetohydrodynamic simulations using a coronal magnetic
field model derived from data observed by the Hinode satellite. Several types
of magnetic bipoles were imposed into the photospheric boundary of the
Non-linear Force-Free Field (NLFFF) model of Active Region NOAA 10930 on 2006
December 13 to investigate what kind of magnetic disturbance may trigger the
flare. As a result, we confirm that certain small bipole fields, which emerge
into the highly sheared global magnetic field of an active region, can
effectively trigger a flare. These bipole fields can be classified into two
groups based on their orientation relative to the polarity inversion line: the
so called opposite polarity (OP) and reversed shear (RS) structures as it was
suggested by Kusano et al. (2012). We also investigated the structure of the
footpoints of reconnected field lines. By comparing the distribution of
reconstructed field lines and the observed flare ribbons, the trigger structure
of the flare can be inferred. Our simulation suggests that the data-constrained
simulation taking into account both the large-scale magnetic structure and the
small-scale magnetic disturbance such as emerging fluxes is a good way to find
out a flare productive active region for space weather prediction.Comment: 28 pages, 10 figure
Self-Consistent MHD Modeling of a Coronal Mass Ejection, Coronal Dimming, and a Giant Cusp-Shaped Arcade Formation
We performed magnetohydrodynamic simulation of coronal mass ejections (CMEs)
and associated giant arcade formations, and the results suggested new
interpretations of observations of CMEs. We performed two cases of the
simulation: with and without heat conduction. Comparing between the results of
the two cases, we found that reconnection rate in the conductive case is a
little higher than that in the adiabatic case and the temperature of the loop
top is consistent with the theoretical value predicted by the Yokoyama-Shibata
scaling law. The dynamical properties such as velocity and magnetic fields are
similar in the two cases, whereas thermal properties such as temperature and
density are very different.In both cases, slow shocks associated with magnetic
reconnectionpropagate from the reconnection region along the magnetic field
lines around the flux rope, and the shock fronts form spiral patterns. Just
outside the slow shocks, the plasma density decreased a great deal. The soft
X-ray images synthesized from the numerical results are compared with the soft
X-ray images of a giant arcade observed with the Soft X-ray Telescope aboard
{\it Yohkoh}, it is confirmed that the effect of heat conduction is significant
for the detailed comparison between simulation and observation. The comparison
between synthesized and observed soft X-ray images provides new interpretations
of various features associated with CMEs and giant arcades.Comment: 39 pages, 18 figures. Accepted for publication in the Astrophysical
Journal. The PDF file with high resplution figures can be downloaded from
http://www.kwasan.kyoto-u.ac.jp/~shiota/study/ApJ62426.preprint.pdf
Polar Field Reversal Observations with Hinode
We have been monitoring yearly variation in the Sun's polar magnetic fields
with the Solar Optical Telescope aboard {\it Hinode} to record their evolution
and expected reversal near the solar maximum. All magnetic patches in the
magnetic flux maps are automatically identified to obtain the number density
and magnetic flux density as a function of th total magnetic flux per patch.
The detected magnetic flux per patch ranges over four orders of magnitude
( -- Mx). The higher end of the magnetic flux in the polar
regions is about one order of magnitude larger than that of the quiet Sun, and
nearly that of pores. Almost all large patches ( Mx) have the
same polarity, while smaller patches have a fair balance of both polarities.
The polarity of the polar region as a whole is consequently determined only by
the large magnetic concentrations. A clear decrease in the net flux of the
polar region is detected in the slow rising phase of the current solar cycle.
The decrease is more rapid in the north polar region than in the south. The
decrease in the net flux is caused by a decrease in the number and size of the
large flux concentrations as well as the appearance of patches with opposite
polarity at lower latitudes. In contrast, we do not see temporal change in the
magnetic flux associated with the smaller patches ( Mx) and that of
the horizontal magnetic fields during the years 2008--2012.Comment: 21 pages, 7 figures. Accepted for publication in Ap
- …
