358 research outputs found

    Improved costs and outcomes with conscious sedation vs general anesthesia in TAVR patients: Time to wake up?

    Get PDF
    BackgroundTranscatheter aortic valve replacement (TAVR) has become a commonplace procedure for the treatment of aortic stenosis in higher risk surgical patients. With the high cost and steadily increasing number of patients receiving TAVR, emphasis has been placed on optimizing outcomes as well as resource utilization. Recently, studies have demonstrated the feasibility of conscious sedation in lieu of general anesthesia for TAVR. This study aimed to investigate the clinical as well as cost outcomes associated with conscious sedation in comparison to general anesthesia in TAVR.MethodsRecords for all adult patients undergoing TAVR at our institution between August 2012 and June 2016 were included using our institutional Society of Thoracic Surgeons (STS) and American College of Cardiology (ACC) registries. Cost data was gathered using the BIOME database. Patients were stratified into two groups according to whether they received general anesthesia (GA) or conscious sedation (CS) during the procedure. No-replacement propensity score matching was done using the validated STS predicted risk of mortality (PROM) as a propensity score. Primary outcome measure with survival to discharge and several secondary outcome measures were also included in analysis. According to our institution's data reporting guidelines, all cost data is presented as a percentage of the general anesthesia control group cost.ResultsOf the 231 patients initially identified, 225 (157 GA, 68 CS) were included for analysis. After no-replacement propensity score matching, 196 patients (147 GA, 49 CS) remained. Overall mortality was 1.5% in the matched population with a trend towards lower mortality in the CS group. Conscious sedation was associated with significantly fewer ICU hours (30 vs 96 hours, p = <0.001) and total hospital days (4.9 vs 10.4, p<0.001). Additionally, there was a 28% decrease in direct cost (p<0.001) as well as significant decreases in all individual all cost categories associated with the use of conscious sedation. There was no difference in composite major adverse events between groups. These trends remained on all subsequent subgroup analyses.ConclusionConscious sedation is emerging as a safe and viable option for anesthesia in patients undergoing transcatheter aortic valve replacement. The use of conscious sedation was not only associated with similar rates of adverse events, but also shortened ICU and overall hospital stays. Finally, there were significant decreases in all cost categories when compared to a propensity matched cohort receiving general anesthesia

    Plasma Levels of Middle Molecules to Estimate Residual Kidney Function in Haemodialysis without Urine Collection

    Get PDF
    © 2015 Vilar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/Licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.BACKGROUND: Residual Kidney Function (RKF) is associated with survival benefits in haemodialysis (HD) but is difficult to measure without urine collection. Middle molecules such as Cystatin C and β2-microglobulin accumulate in renal disease and plasma levels have been used to estimate kidney function early in this condition. We investigated their use to estimate RKF in patients on HD. DESIGN: Cystatin C, β2-microglobulin, urea and creatinine levels were studied in patients on incremental high-flux HD or hemodiafiltration(HDF). Over sequential HD sessions, blood was sampled pre- and post-session 1 and pre-session 2, for estimation of these parameters. Urine was collected during the whole interdialytic interval, for estimation of residual GFR (GFRResidual = mean of urea and creatinine clearance). The relationships of plasma Cystatin C and β2-microglobulin levels to GFRResidual and urea clearance were determined. RESULTS: Of the 341 patients studied, 64% had urine output>100 ml/day, 32.6% were on high-flux HD and 67.4% on HDF. Parameters most closely correlated with GFRResidual were 1/β2-micoglobulin (r2 0.67) and 1/Cystatin C (r2 0.50). Both these relationships were weaker at low GFRResidual. The best regression model for GFRResidual, explaining 67% of the variation, was: GFRResidual = 160.3 · (1/β2m) - 4.2. Where β2m is the pre-dialysis β2 microglobulin concentration (mg/L). This model was validated in a separate cohort of 50 patients using Bland-Altman analysis. Areas under the curve in Receiver Operating Characteristic analysis aimed at identifying subjects with urea clearance≥2 ml/min/1.73 m2 was 0.91 for β2-microglobulin and 0.86 for Cystatin C. A plasma β2-microglobulin cut-off of ≤19.2 mg/L allowed identification of patients with urea clearance ≥2 ml/min/1.73 m2 with 90% specificity and 65% sensitivity. CONCLUSION: Plasma pre-dialysis β2-microglobulin levels can provide estimates of RKF which may have clinical utility and appear superior to cystatin C. Use of cut-off levels to identify patients with RKF may provide a simple way to individualise dialysis dose based on RKF.Peer reviewe

    Simple methodology for the quantitative analysis of fatty acids in human red blood cells

    Get PDF
    In the last years, there has been an increasing interest in evaluating possible relations between fatty acid (FA) patterns and the risk for chronic diseases. Due to the long life span (120 days) of red blood cells (RBCs), their FA profile reflects a longer term dietary intake and was recently suggested to be used as an appropriate biomarker to investigate correlations between FA metabolism and diseases. Therefore, the aim of this work was to develop and validate a simple and fast methodology for the quantification of a broad range of FAs in RBCs using gas chromatography with flame ionization detector, as a more common and affordable equipment suitable for biomedical and nutritional studies including a large number of samples. For this purpose, different sample preparation protocols were tested and compared, including a classic two-step method (Folch method) with modifications and different one-step methods, in which lipid extraction and derivatization were performed simultaneously. For the one-step methods, different methylation periods and the inclusion of a saponification reaction were evaluated. Differences in absolute FA concentrations were observed among the tested methods, in particular for some metabolically relevant FAs such as trans elaidic acid and eicosapentaenoic acid. The one-step method with saponification and 60 min of methylation time was selected since it allowed the identification of a higher number of FAs, and was further submitted to in-house validation. The proposed methodology provides a simple, fast and accurate tool to quantitatively analyse FAs in human RBCs, useful for clinical and nutritional studies.This work received financial support from the European Union (FEDER funds through COMPETE) and National Funds (FCT, Fundação para a Ciência e Tecnologia) through project PTDC/SAU-ENB/116929/2010 and EXPL/EMS-SIS/2215/2013. ROR acknowledges PhD scholarship SFRH/BD/97658/2013 attributed by FCT (Fundação para a Ciência e Tecnologia).info:eu-repo/semantics/publishedVersio

    Optimising intraperitoneal gentamicin dosing in peritoneal dialysis patients with peritonitis (GIPD) study

    Get PDF
    Background: Antibiotics are preferentially delivered via the peritoneal route to treat peritonitis, a major complication of peritoneal dialysis (PD), so that maximal concentrations are delivered at the site of infection. However, drugs administered intraperitoneally can be absorbed into the systemic circulation. Drugs excreted by the kidneys accumulate in PD patients, increasing the risk of toxicity. The aim of this study is to examine a model of gentamicin pharmacokinetics and to develop an intraperitoneal drug dosing regime that maximises bacterial killing and minimises toxicity

    Quantitative Analysis of Mechanisms That Govern Red Blood Cell Age Structure and Dynamics during Anaemia

    Get PDF
    Mathematical modelling has proven an important tool in elucidating and quantifying mechanisms that govern the age structure and population dynamics of red blood cells (RBCs). Here we synthesise ideas from previous experimental data and the mathematical modelling literature with new data in order to test hypotheses and generate new predictions about these mechanisms. The result is a set of competing hypotheses about three intrinsic mechanisms: the feedback from circulating RBC concentration to production rate of immature RBCs (reticulocytes) in bone marrow, the release of reticulocytes from bone marrow into the circulation, and their subsequent ageing and clearance. In addition we examine two mechanisms specific to our experimental system: the effect of phenylhydrazine (PHZ) and blood sampling on RBC dynamics. We performed a set of experiments to quantify the dynamics of reticulocyte proportion, RBC concentration, and erythropoietin concentration in PHZ-induced anaemic mice. By quantifying experimental error we are able to fit and assess each hypothesis against our data and recover parameter estimates using Markov chain Monte Carlo based Bayesian inference. We find that, under normal conditions, about 3% of reticulocytes are released early from bone marrow and upon maturation all cells are released immediately. In the circulation, RBCs undergo random clearance but have a maximum lifespan of about 50 days. Under anaemic conditions reticulocyte production rate is linearly correlated with the difference between normal and anaemic RBC concentrations, and their release rate is exponentially correlated with the same. PHZ appears to age rather than kill RBCs, and younger RBCs are affected more than older RBCs. Blood sampling caused short aperiodic spikes in the proportion of reticulocytes which appear to have a different developmental pathway than normal reticulocytes. We also provide evidence of large diurnal oscillations in serum erythropoietin levels during anaemia

    Dialysis-associated peritonitis in children

    Get PDF
    Peritonitis remains a frequent complication of peritoneal dialysis in children and is the most common reason for technique failure. The microbiology is characterized by a predominance of Gram-positive organisms, with fungi responsible for less than 5% of episodes. Data collected by the International Pediatric Peritonitis Registry have revealed a worldwide variation in the bacterial etiology of peritonitis, as well as in the rate of culture-negative peritonitis. Risk factors for infection include young age, the absence of prophylactic antibiotics at catheter placement, spiking of dialysis bags, and the presence of a catheter exit-site or tunnel infection. Clinical symptoms at presentation are somewhat organism specific and can be objectively assessed with a Disease Severity Score. Whereas recommendations for empiric antibiotic therapy in children have been published by the International Society of Peritoneal Dialysis, epidemiologic data and antibiotic susceptibility data suggest that it may be desirable to take the patient- and center-specific history of microorganisms and their sensitivity patterns into account when prescribing initial therapy. The vast majority of patients are treated successfully and continue peritoneal dialysis, with the poorest outcome noted in patients with peritonitis secondary to Gram-negative organisms or fungi and in those with a relapsing infection
    corecore