49 research outputs found

    Nitrogen and Phosphorus Application Effects on Pearl Millet Forage Yield and Nutritive Value

    Get PDF
    There is limited information on the nitrogen (N) and phosphorus (P) fertilizer requirement of pearl millet forage in dryland systems. Determination of optimum N and P rates for pearl millet forage production in dryland environments of the Great Plains will have economic advantage for farmers and ranchers growing pearl millet for forage. A field experiment was conducted in 2016 at the Agricultural Research Center-Hays, KS, to investigate N and P fertilizer application effects on forage yield and nutritive value of pearl millet. Factorial combinations of five levels of N (0, 30, 60, 90, and 120 lb/a) and three levels of P (0, 15, and 30 lb/a) were evaluated in randomized complete block design with four replications. A forage-hybrid cultivar, TifLeaf 3, released by U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) unit at the University of Georgia (Tifton, GA) was used for the experiment. The seed was drilled in six rows at 15 lb/a in individual plot sizes of 5 ft wide × 30 ft long. The results indicate that N fertilizer application increased forage yield, crude protein content, and in vitro dry matter digestibility. Although increase in N rate increased the protein content and digestibility of the forage, this single season on-station experiment indicates that N rate of 30 lb/a is adequate for pearl millet forage production under rain-fed conditions. Application of P fertilizer had no effect on forage yield. However, applying 15 lb P/a did increase in vitro dry matter digestibility compared to the check treatment

    Sugarcane Aphid Resistance in Pearl Millet

    Get PDF
    Sugarcane aphid, (Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae)) has become an important pest of sorghum in the US. This recent invasion is assumed to be either as a result of a host shift from sugarcane in the south or introduction of a special­ized strain from tropical Africa. If host shift happened through adaptive change to infest sorghum, other closely related species such as pearl millet are in danger from this voracious pest. The resistance level of pearl millet genotypes representing A-, B-, R-lines and germplasm were evaluated under climate-controlled growth chamber along with resistant and susceptible sorghum hybrids. Ten plants of the genotypes were planted in a row in a tray per replicate. Cuttings infested with a stock colony of aphids maintained on the susceptible sorghum line were evenly distributed across the soil in each tray to ascend the plants at will. The damage was scored two times (5 and 8 days after infesta­tion) using a scale of 1 to 9 (1 = no visible damage, 9 = dead). The statistical analysis of data found that there are significant differences among genotypes for aphid feeding damage. However, none of the pearl millet genotypes were affected to the level of susceptible sorghum. Four genotypes of pearl millet had resistance levels similar to the resistant sorghum. No statistical differences were observed among the A, B, and R-lines and the germplasm—implying that the cytoplasmic male-sterility system, nuclear restorer gene, and sterility maintainer counterparts have no impact on SCA resistance and susceptibility in pearl millet

    Transcriptome analysis in switchgrass discloses ecotype difference in photosynthetic efficiency

    Get PDF
    Citation: Serba, D. D., Uppalapati, S. R., Krom, N., Mukherjee, S., Tang, Y. H., Mysore, K. S., & Saha, M. C. (2016). Transcriptome analysis in switchgrass discloses ecotype difference in photosynthetic efficiency. Bmc Genomics, 17, 14. doi:10.1186/s12864-016-3377-8Background: Switchgrass, a warm-season perennial grass studied as a potential dedicated biofuel feedstock, is classified into two main taxa - lowland and upland ecotypes - that differ in morphology and habitat of adaptation. But there is limited information on their inherent molecular variations. Results: Transcriptome analysis by RNA-sequencing (RNA-Seq) was conducted for lowland and upland ecotypes to document their gene expression variations. Mapping of transcriptome to the reference genome (Panicum virgatum v1. 1) revealed that the lowland and upland ecotypes differ substantially in sets of genes transcribed as well as levels of expression. Differential gene expression analysis exhibited that transcripts related to photosynthesis efficiency and development and photosystem reaction center subunits were upregulated in lowlands compared to upland genotype. On the other hand, catalase isozymes, helix-loop-helix, late embryogenesis abundant group I, photosulfokinases, and S-adenosyl methionine synthase gene transcripts were upregulated in the upland compared to the lowlands. At >= 100x coverage and >= 5% minor allele frequency, a total of 25,894 and 16,979 single nucleotide polymorphism (SNP) markers were discovered for VS16 (upland ecotype) and K5 (lowland ecotype) against the reference genome. The allele combination of the SNPs revealed that the transition mutations are more prevalent than the transversion mutations. Conclusions: The gene ontology (GO) analysis of the transcriptome indicated lowland ecotype had significantly higher representation for cellular components associated with photosynthesis machinery controlling carbon fixation. In addition, using the transcriptome data, SNP markers were detected, which were distributed throughout the genome. The differentially expressed genes and SNP markers detected in this study would be useful resources for traits mapping and gene transfer across ecotypes in switchgrass breeding for increased biomass yield for biofuel conversion

    Comparative Transcriptome Analysis Reveals Genetic Mechanisms of Sugarcane Aphid Resistance in Grain Sorghum

    Get PDF
    The sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae) (SCA), has become a major pest of grain sorghum since its appearance in the USA. Several grain sorghum parental lines are moderately resistant to the SCA. However, the molecular and genetic mechanisms underlying this resistance are poorly understood, which has constrained breeding for improved resistance. RNA-Seq was used to conduct transcriptomics analysis on a moderately resistant genotype (TAM428) and a susceptible genotype (Tx2737) to elucidate the molecular mechanisms underlying resistance. Differential expression analysis revealed differences in transcriptomic profile between the two genotypes at multiple time points after infestation by SCA. Six gene clusters had differential expression during SCA infestation. Gene ontology enrichment and cluster analysis of genes differentially expressed after SCA infestation revealed consistent upregulation of genes controlling protein and lipid binding, cellular catabolic processes, transcription initiation, and autophagy in the resistant genotype. Genes regulating responses to external stimuli and stress, cell communication, and transferase activities, were all upregulated in later stages of infestation. On the other hand, expression of genes controlling cell cycle and nuclear division were reduced after SCA infestation in the resistant genotype. These results indicate that different classes of genes, including stress response genes and transcription factors, are responsible for countering the physiological effects of SCA infestation in resistant sorghum plants

    Hybrid Bermudagrass Responses to Impaired Water Sources

    Get PDF
    Low-quality (i.e., impaired) water sources are commonly used to irrigate warm-season turfgrass landscapes as a result of limited supplies of potable water sources. Currently, there is great need to define the impacts of impaired water sources on turfgrass water consumption, growth, and quality. The objectives of this study were to characterize actual evaporation (ETa), clipping production, and quality of three hybrid bermudagrass varieties [‘TifTuf’, ‘Tifway’, and ‘Midiron’; Cynodon dactylon (L.) Pers. × C. traansvalensis Burtt Davy] grown under three water sources [reverse osmosis (RO), local well, and recycled], each supplied at full irrigation levels (1.0 × ETa) over two 8-week study periods. When pooling across water source and date, TifTuf maintained the highest visual quality and normalized difference vegetation index (NDVI) compared with both Midiron and Tifway. This was accompanied by a greater daily ETa rate, clipping production, and water use efficiency (WUE) compared with Midiron in both studies. When pooling across variety and date, daily ETa of turfgrass receiving recycled water was 5% to 10% less than those receiving the local well or RO water. In addition, turfgrasses receiving local well water held the greatest visual quality and NDVI compared with those receiving either RO water in the summer study. Visual quality and NDVI were also less in turfgrasses receiving RO water compared with those receiving local well or recycled water in the fall. Despite turfgrasses having a lower ETa under recycled water in both study periods, these plants had significantly greater clipping production compared with RO water in the summer. Also, clipping production under recycled water did not differ significantly from the other two sources in the fall study. Furthermoe, in both studies, WUE was similar for turfgrasses receiving recycled water compared with those receiving RO or local well water. Results demonstrated that irrigation water quality influences critical factors for hybrid bermudagrass growth and that considerable variability exists among three commercially available varieties for evapotranspiration rates, quality, and clipping production

    Genomic diversity in pearl millet inbred lines derived from landraces and improved varieties

    Get PDF
    Background: Genetic improvement of pearl millet is lagging behind most of the major crops. Development of genomic resources is expected to expedite breeding for improved agronomic traits, stress tolerance, yield, and nutritional quality. Genotyping a breeding population with high throughput markers enables exploration of genetic diversity, population structure, and linkage disequilibrium (LD) which are important preludes for marker-trait association studies and application of genomic-assisted breeding. Results: Genotyping-by-sequencing (GBS) libraries of 309 inbred lines derived from landraces and improved varieties from Africa and India generated 54,770 high quality single nucleotide polymorphism (SNP) markers. On average one SNP per 29 Kb was mapped in the reference genome, with the telomeric regions more densely mapped than the pericentromeric regions of the chromosomes. Population structure analysis using 30,208 SNPs evenly distributed in the genome divided 309 accessions into five subpopulations with different levels of admixture. Pairwise genetic distance (GD) between accessions varied from 0.09 to 0.33 with the average distance of 0.28. Rapid LD decay implied low tendency of markers inherited together. Genetic differentiation estimates were the highest between subgroups 4 and 5, and the lowest between subgroups 1 and 2. Conclusions: Population genomic analysis of pearl millet inbred lines derived from diverse geographic and agroecological features identified five subgroups mostly following pedigree differences with different levels of admixture. It also revealed the prevalence of high genetic diversity in pearl millet, which is very useful in defining heterotic groups for hybrid breeding, trait mapping, and holds promise for improving pearl millet for yield and nutritional quality. The short LD decay observed suggests an absence of persistent haplotype blocks in pearl millet. The diverse genetic background of these lines and their low LD make this set of germplasm useful for traits mapping

    HIGH VOLTAGE AC PLASMA TORCH OPERATING ON VAPORS OF ORGANIC SUBSTANCES

    Get PDF
    The report deals with a three-phase high-voltage plasma torch with separate supply of gases and vapors during its operation on a mixture of steam, carbon dioxide, methane and chlorobenzene vapors. Increase in the chlorobenzene flow rate leads to increase in the arc voltage drop and electric power from 100 to 140 kW.99-9

    Breeding Drought-Tolerant Pearl Millet Using Conventional and Genomic Approaches: Achievements and Prospects

    Get PDF
    Pearl millet [Pennisetum glaucum (L.) R. Br.] is a C4 crop cultivated for its grain and stover in crop-livestock-based rain-fed farming systems of tropics and subtropics in the Indian subcontinent and sub-Saharan Africa. The intensity of drought is predicted to further exacerbate because of looming climate change, necessitating greater focus on pearl millet breeding for drought tolerance. The nature of drought in different target populations of pearl millet-growing environments (TPEs) is highly variable in its timing, intensity, and duration. Pearl millet response to drought in various growth stages has been studied comprehensively. Dissection of drought tolerance physiology and phenology has helped in understanding the yield formation process under drought conditions. The overall understanding of TPEs and differential sensitivity of various growth stages to water stress helped to identify target traits for manipulation through breeding for drought tolerance. Recent advancement in high-throughput phenotyping platforms has made it more realistic to screen large populations/germplasm for droughtadaptive traits. The role of adapted germplasm has been emphasized for drought breeding, as the measured performance under drought stress is largely an outcome of adaptation to stress environments. Hybridization of adapted landraces with selected elite genetic material has been stated to amalgamate adaptation and productivity. Substantial progress has been made in the development of genomic resources that have been used to explore genetic diversity, linkage mapping (QTLs), markertrait association (MTA), and genomic selection (GS) in pearl millet. High-throughput genotyping (HTPG) platforms are now available at a low cost, offering enormous opportunities to apply markers assisted selection (MAS) in conventional breeding programs targeting drought tolerance. Next-generation sequencing (NGS) technology, micro-environmental modeling, and pearl millet whole genome re-sequence information covering circa 1,000 wild and cultivated accessions have helped to greater understand germplasm, genomes, candidate genes, and markers. Their application in molecular breeding would lead to the development of high-yielding and drought-tolerant pearl millet cultivars. This review examines how the strategic use of genetic resources, modern genomics, molecular biology, and shuttle breeding can further enhance the development and delivery of drought-tolerant cultivars
    corecore