792 research outputs found
Recommended from our members
Genome-wide association study of primary open-angle glaucoma in continental and admixed African populations.
Primary open angle glaucoma (POAG) is a complex disease with a major genetic contribution. Its prevalence varies greatly among ethnic groups, and is up to five times more frequent in black African populations compared to Europeans. So far, worldwide efforts to elucidate the genetic complexity of POAG in African populations has been limited. We conducted a genome-wide association study in 1113 POAG cases and 1826 controls from Tanzanian, South African and African American study samples. Apart from confirming evidence of association at TXNRD2 (rs16984299; OR[T] 1.20; P = 0.003), we found that a genetic risk score combining the effects of the 15 previously reported POAG loci was significantly associated with POAG in our samples (OR 1.56; 95% CI 1.26-1.93; P = 4.79 × 10-5). By genome-wide association testing we identified a novel candidate locus, rs141186647, harboring EXOC4 (OR[A] 0.48; P = 3.75 × 10-8), a gene transcribing a component of the exocyst complex involved in vesicle transport. The low frequency and high degree of genetic heterogeneity at this region hampered validation of this finding in predominantly West-African replication sets. Our results suggest that established genetic risk factors play a role in African POAG, however, they do not explain the higher disease load. The high heterogeneity within Africans remains a challenge to identify the genetic commonalities for POAG in this ethnicity, and demands studies of extremely large size
Helicobacter pylori colonization and obesity - A Mendelian randomization study
Obesity is associated with substantial morbidity, costs, and decreased life expectancy, and continues to rise worldwide. While etiological understanding is needed for prevention, epidemiological studies indicated that colonization with Helicobacter pylori (H. pylori) may affect body mass index (BMI), but with inconsistent results. Here, we examine the relationship between H. pylori colonization and BMI/obesity. Cross-sectional analyses were performed in two independent population-based cohorts of elderly from the Netherlands and Germany (n = 13,044). Genetic risk scores were conducted based on genetic loci associated with either H. pylori colonization or BMI/obesity. We performed a bi-directional Mendelian randomization. Meta-analysis of cross-sectional data revealed no association between anti-H. pylori IgG titer and BMI, nor of H. pylori positivity and BMI. Anti-H. pylori IgG titer was negatively associated with obesity (OR 0.99972; 95% CI 0.99946-0.99997, p = 0.03) and with obesity classes (Beta -6.91 •10-5; 95% CI -1.38•10-4, -5.49•10-7, p = 0.048), but the magnitude of these effects was limited. Mendelian randomization showed no causal relation between H. pylori genetic risk score and BMI/obesity, nor between BMI or obesity genetic risk scores and H. pylori positivity. This study provides no evidence for a clinically relevant association between H. pylori and BMI/obesity
The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow
Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distribution of ion channels across its processes. For a variety of physiological or pathological reasons, the intrinsic input/output function may change during a neuron’s lifetime. This process results in high variability in the peak specific conductance of ion channels in individual neurons. The mechanisms responsible for this variability are not well understood, although there are clear indications from experiment and modeling that degeneracy and correlation among multiple channels may be involved. Here, we studied this issue in biophysical models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified data-driven simulation workflow and starting from a set of experimental recordings and morphological reconstructions obtained from rats, we built and analyzed several ensembles of morphologically and biophysically accurate single cell models with intrinsic electrophysiological properties consistent with experimental findings. The results suggest that the set of conductances expressed in any given hippocampal neuron may be considered as belonging to two groups: one subset is responsible for the major characteristics of the firing behavior in each population and the other responsible for a robust degeneracy. Analysis of the model neurons suggests several experimentally testable predictions related to the combination and relative proportion of the different conductances that should be expressed on the membrane of different types of neurons for them to fulfill their role in the hippocampus circuitry
Testing the role of predicted gene knockouts in human anthropometric trait variation
National Heart, Lung, and Blood Institute (NHLBI)
S.L. is funded by a Canadian Institutes of Health Research
Banting doctoral scholarship. G.L. is funded by Genome Canada
and Génome Québec; the Canada Research Chairs program; and
the Montreal Heart Institute Foundation. C.M.L. is supported by
Wellcome Trust (grant numbers 086596/Z/08/Z, 086596/Z/08/A);
and the Li Ka Shing Foundation. N.S. is funded by National Institutes
of Health (grant numbers HL088456, HL111089, HL116747).
The Mount Sinai BioMe Biobank Program is supported by the Andrea
and Charles Bronfman Philanthropies. GO ESP is supported
by NHLBI (RC2 HL-103010 to HeartGO, RC2 HL-102923 to LungGO,
RC2 HL-102924 to WHISP). The ESP exome sequencing was
performed through NHLBI (RC2 HL-102925 to BroadGO, RC2 HL-
102926 to SeattleGO). EGCUT work was supported through the
Estonian Genome Center of University of Tartu by the Targeted
Financing from the Estonian Ministry of Science and Education
(grant number SF0180142s08); the Development Fund of the University
of Tartu (grant number SP1GVARENG); the European Regional
Development Fund to the Centre of Excellence in
Genomics (EXCEGEN) [grant number 3.2.0304.11-0312]; and
through FP7 (grant number 313010). EGCUT were further supported
by the US National Institute of Health (grant number
R01DK075787). A.K.M. was supported by an American Diabetes
Association Mentor-Based Postdoctoral Fellowship (#7-12-MN-
02). The BioVU dataset used in the analyses described were obtained
from Vanderbilt University Medical Centers BioVU which
is supported by institutional funding and by the Vanderbilt CTSA
grant ULTR000445 from NCATS/NIH. Genome-wide genotyping
was funded by NIH grants RC2GM092618 from NIGMS/OD and
U01HG004603 from NHGRI/NIGMS. Funding to pay the Open Access
publication charges for this article was provided by a block
grant from Research Councils UK to the University of Cambridge
Testing the role of predicted gene knockouts in human anthropometric trait variation
National Heart, Lung, and Blood Institute (NHLBI)
S.L. is funded by a Canadian Institutes of Health Research
Banting doctoral scholarship. G.L. is funded by Genome Canada
and Génome Québec; the Canada Research Chairs program; and
the Montreal Heart Institute Foundation. C.M.L. is supported by
Wellcome Trust (grant numbers 086596/Z/08/Z, 086596/Z/08/A);
and the Li Ka Shing Foundation. N.S. is funded by National Institutes
of Health (grant numbers HL088456, HL111089, HL116747).
The Mount Sinai BioMe Biobank Program is supported by the Andrea
and Charles Bronfman Philanthropies. GO ESP is supported
by NHLBI (RC2 HL-103010 to HeartGO, RC2 HL-102923 to LungGO,
RC2 HL-102924 to WHISP). The ESP exome sequencing was
performed through NHLBI (RC2 HL-102925 to BroadGO, RC2 HL-
102926 to SeattleGO). EGCUT work was supported through the
Estonian Genome Center of University of Tartu by the Targeted
Financing from the Estonian Ministry of Science and Education
(grant number SF0180142s08); the Development Fund of the University
of Tartu (grant number SP1GVARENG); the European Regional
Development Fund to the Centre of Excellence in
Genomics (EXCEGEN) [grant number 3.2.0304.11-0312]; and
through FP7 (grant number 313010). EGCUT were further supported
by the US National Institute of Health (grant number
R01DK075787). A.K.M. was supported by an American Diabetes
Association Mentor-Based Postdoctoral Fellowship (#7-12-MN-
02). The BioVU dataset used in the analyses described were obtained
from Vanderbilt University Medical Centers BioVU which
is supported by institutional funding and by the Vanderbilt CTSA
grant ULTR000445 from NCATS/NIH. Genome-wide genotyping
was funded by NIH grants RC2GM092618 from NIGMS/OD and
U01HG004603 from NHGRI/NIGMS. Funding to pay the Open Access
publication charges for this article was provided by a block
grant from Research Councils UK to the University of Cambridge
A meta-analysis of gene expression signatures of blood pressure and hypertension
Genome-wide association studies (GWAS) have uncovered numerous genetic variants (SNPs) that are associated with blood pressure (BP). Genetic variants may lead to BP changes by acting on intermediate molecular phenotypes such as coded protein sequence or gene expression, which in turn affect BP variability. Therefore, characterizing genes whose expression is associated with BP may reveal cellular processes involved in BP regulation and uncover how transcripts mediate genetic and environmental effects on BP variability. A meta-analysis of results from six studies of global gene expression profiles of BP and hypertension in whole blood was performed in 7017 individuals who were not receiving antihypertensive drug treatment. We identified 34 genes that were differentially expressed in relation to BP (Bonferroni-corrected p<0.05). Among these genes, FOS and PTGS2 have been previously reported to be involved in BP-related processes; the others are novel. The top BP signature genes in aggregate explain 5%-9% of inter-individual variance in BP. Of note, rs3184504 in SH2B3, which was also reported in GWAS to be associated with BP, was found to be a trans regulator of the expression of 6 of the transcripts we found to be associated with BP (FOS, MYADM, PP1R15A, TAGAP, S100A10, and FGBP2). Gene set enrichment analysis suggested that the BP-related global gene expression changes include genes involved in inflammatory response and apoptosis pathways. Our study provides new insights into molecular mechanisms underlying BP regulation, and suggests novel transcriptomic markers for the treatment and prevention of hypertension
Partial Purification and Characterization of Hydroxycinnamoyl-Coenzyme A:Tyramine Hydroxycinnamoyltransferase from Cell Suspension Cultures of Solanum tuberosum
Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits
The growth hormone/insulin-like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF-related proteins including IGF-I and IGF-binding protein-3 (IGFBP-3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer. Throug
Testing the role of predicted gene knockouts in human anthropometric trait variation
National Heart, Lung, and Blood Institute (NHLBI)
S.L. is funded by a Canadian Institutes of Health Research
Banting doctoral scholarship. G.L. is funded by Genome Canada
and Génome Québec; the Canada Research Chairs program; and
the Montreal Heart Institute Foundation. C.M.L. is supported by
Wellcome Trust (grant numbers 086596/Z/08/Z, 086596/Z/08/A);
and the Li Ka Shing Foundation. N.S. is funded by National Institutes
of Health (grant numbers HL088456, HL111089, HL116747).
The Mount Sinai BioMe Biobank Program is supported by the Andrea
and Charles Bronfman Philanthropies. GO ESP is supported
by NHLBI (RC2 HL-103010 to HeartGO, RC2 HL-102923 to LungGO,
RC2 HL-102924 to WHISP). The ESP exome sequencing was
performed through NHLBI (RC2 HL-102925 to BroadGO, RC2 HL-
102926 to SeattleGO). EGCUT work was supported through the
Estonian Genome Center of University of Tartu by the Targeted
Financing from the Estonian Ministry of Science and Education
(grant number SF0180142s08); the Development Fund of the University
of Tartu (grant number SP1GVARENG); the European Regional
Development Fund to the Centre of Excellence in
Genomics (EXCEGEN) [grant number 3.2.0304.11-0312]; and
through FP7 (grant number 313010). EGCUT were further supported
by the US National Institute of Health (grant number
R01DK075787). A.K.M. was supported by an American Diabetes
Association Mentor-Based Postdoctoral Fellowship (#7-12-MN-
02). The BioVU dataset used in the analyses described were obtained
from Vanderbilt University Medical Centers BioVU which
is supported by institutional funding and by the Vanderbilt CTSA
grant ULTR000445 from NCATS/NIH. Genome-wide genotyping
was funded by NIH grants RC2GM092618 from NIGMS/OD and
U01HG004603 from NHGRI/NIGMS. Funding to pay the Open Access
publication charges for this article was provided by a block
grant from Research Councils UK to the University of Cambridge
The entropy of ``strange'' billiards inside n-simplexes
In the present work we investigate a new type of billiards defined inside of
--simplex regions. We determine an invariant ergodic (SRB) measure of the
dynamics for any dimension. In using symbolic dynamics, the (KS or metric)
entropy is computed and we find that the system is chaotic for all cases .Comment: 8 pages, uuencoded compressed postscript fil
- …
