319 research outputs found
Maternal race-ethnicity, immigrant status, country of birth, and the odds of a child with autism spectrum disorder
The risk of autism spectrum disorder varies by maternal race–ethnicity, immigration status, and birth region. In this retrospective cohort study, Western Australian state registries and a study population of 134 204 mothers enabled us to examine the odds of autism spectrum disorder with intellectual disability in children born from 1994 to 2005 by the aforementioned characteristics. We adjusted for maternal age, parity, socioeconomic status, and birth year. Indigenous women were 50% less likely to have a child with autism spectrum disorder with intellectual disability than Caucasian, nonimmigrant women. Overall, immigrant women were 40% less likely to have a child with autism spectrum disorder with intellectual disability than nonimmigrant women. However, Black women from East Africa had more than 3.5 times the odds of autism spectrum disorder with intellectual disability in their children than Caucasian nonimmigrant women. Research is implicated on risk and protective factors for autism spectrum disorder with intellectual disability in the children of immigrant women
Microbial transformations of selenite by methane-oxidizing bacteria
Abstract Methane oxidizing bacteria are well known for their role in the global methane cycle and their potential for microbial transformation of wide range of hydrocarbon and chlorinated hydrocarbon pollution. Recently, it has also emerged that methane-oxidizing bacteria interact with inorganic pollutants in the environment. Here we report what we believe to be the first study of the interaction of pure strains of methane-oxidizing bacteria with selenite. Results indicate that the commonly used laboratory model strains of methane oxidizing bacteria, Methylococcus capsulatus (Bath) and Methylosinus trichosporium OB3b are both able to reduce the toxic selenite (SeO32-) but not selenate (SeO42-) to red spherical nanoparticulate elemental selenium (Se0), which was characterised via EDX and EXAFS. The cultures also produced volatile selenium-containing species, which suggests that both strains may have an additional activity that can either transform Se0 or selenite into volatile methylated forms of selenium. Transmission electron microscopy (TEM) measurements and experiments with the cell fractions: cytoplasm, cell wall and cell membrane show that the nanoparticles are formed mainly on the cell wall. Collectively these results are promising for the use of methane-oxidizing bacteria for bioremediation or suggest possible uses in the production of selenium nanoparticles for biotechnology
Releasing activity disengages Cohesin’s Smc3/Scc1 interface in a process blocked by Acetylation
Sister chromatid cohesion conferred by entrapment
of sister DNAs within a tripartite ring formed between
cohesin’s Scc1, Smc1, and Smc3 subunits is created
during S and destroyed at anaphase through Scc1
cleavage by separase. Cohesin’s association with
chromosomes is controlled by opposing activities:
loading by Scc2/4 complex and release by a separase-
independent releasing activity as well as by
cleavage. Coentrapment of sister DNAs at replication
is accompanied by acetylation of Smc3 by Eco1,
which blocks releasing activity and ensures that sisters
remain connected. Because fusion of Smc3 to
Scc1 prevents release and bypasses the requirement
for Eco1, we suggested that release is mediated
by disengagement of the Smc3/Scc1 interface. We
show that mutations capable of bypassing Eco1 in
Smc1, Smc3, Scc1, Wapl, Pds5, and Scc3 subunits
reduce dissociation of N-terminal cleavage fragments
of Scc1 (NScc1) from Smc3. This process involves
interaction between Smc ATPase heads and
is inhibited by Smc3 acetylation
The inflammatory and genetic mechanisms underlying the cumulative effect of co-occurring pain conditions on depression
Chronic pain conditions frequently coexist and share common genetic vulnerabilities. Despite evidence showing associations between pain and depression, the additive effect of co-occurring pain conditions on depression risk and the underlying mechanisms remain unclear. Leveraging data from 431,038 UK Biobank participants with 14-year follow-up, we found a significantly increased risk of depression incidence in individuals reporting pain, irrespective of body site or duration (acute or chronic), compared with pain-free individuals. The depression risk increased with the number of co-occurring pain sites. Mendelian randomization supported potential causal inference. We constructed a composite pain score by combining individual effects of acute or chronic pain conditions across eight body sites in a weighted manner. We found that depression risks increased monotonically in parallel with composite pain scores. Moreover, some inflammatory markers, including C-reactive protein, partially mediated the association between composite pain scores and depression risk. Considering the high prevalence of comorbid depression and pain, pain screening may help identify high-risk individuals for depression
Nitrogen addition and ecosystem functioning: Both species abundances and traits alter community structure and function
Increased nutrient inputs can cause shifts in plant community composition and plant functional traits, both of which affect ecosystem function. We studied community- and species-level leaf functional trait changes in a full factorial nitrogen (N), phosphorus (P), and potassium (K) fertilization experiment in a semi-arid grassland. Nitrogen was the only nutrient addition to significantly affect leaf functional traits, and N addition increased community-weighted specific leaf area (SLA) by 19%, leaf chlorophyll content by 34%, height by 26%, and leaf dry matter content (LDMC) decreased by 11% while leaf thickness and toughness did not change significantly. At the species level, most species contributed to the community-weighted trait and increased in SLA, chlorophyll, height, and LDMC with N addition. These intraspecific changes in functional traits account for 51–71% of the community-level changes in SLA, chlorophyll, plant height, and LDMC. The remaining change is due to species abundance changes; the two most abundant species (Bouteloua gracilis and Carex filifolia) decreased in abundance with N addition while subdominant species increased in abundance. We also found annual variation in SLA, chlorophyll, plant height, and LDMC to be as important in influencing traits as N addition, likely due to differences in precipitation. Aboveground net primary productivity (ANPP) did not change significantly with N addition. However, N addition caused a 34% increase in leaf area index (LAI) and a 67% increase in canopy chlorophyll density. We demonstrate that nitrogen-induced changes in both functional traits and species abundances magnify ANPP changes in LAI and canopy chlorophyll density. Therefore, ANPP underestimates N addition-induced ecosystem-level changes in the canopy vegetation
Functional brain networks reflect spatial and temporal autocorrelation
High-throughput experimental methods in neuroscience have led to an explosion of techniques for measuring complex interactions and multi-dimensional patterns. However, whether sophisticated measures of emergent phenomena can be traced back to simpler, low-dimensional statistics is largely unknown. To explore this question, we examined resting-state functional magnetic resonance imaging (rs-fMRI) data using complex topology measures from network neuroscience. Here we show that spatial and temporal autocorrelation are reliable statistics that explain numerous measures of network topology. Surrogate time series with subject-matched spatial and temporal autocorrelation capture nearly all reliable individual and regional variation in these topology measures. Network topology changes during aging are driven by spatial autocorrelation, and multiple serotonergic drugs causally induce the same topographic change in temporal autocorrelation. This reductionistic interpretation of widely used complexity measures may help link them to neurobiology
Synchrotron X-ray absorption spectroscopy reveals antimony sequestration by reduced sulfur in a freshwater wetland sediment
The biogeochemistry of antimony (Sb) in wetland sediments is poorly characterised, despite their importance as contaminant sinks. The organic-rich, reducing nature of wetland sediments may facilitate sequestration mechanisms that are not typically present in oxic soils, where the majority of research to date has taken place. Using X-ray absorption spectroscopy (XAS), we present evidence of antimony speciation being dominated by secondary antimony–sulfur phases in a wetland sediment. Our results demonstrate that, by incorporating a newly developed SbIII–organic sulfur reference standard, linear combination fitting analysis of antimony K-edge XAS spectra and robust statistical assessment of fit quality allows the reliable discrimination of SbIII coordination environments. We found that a contaminated wetland sediment in New South Wales, Australia, contained 57 % of the total antimony as SbIII–phases, with 44 % present as a highly-disordered antimony phase, likely consisting of SbIII complexed by organic sulfur (e.g. thiols) or an amorphous SbIII sulfide (e.g. SbS3). The methodological approach outlined in this study and our identification of the importance of reduced sulfur in sequestering antimony has implications for future research in the area of antimony biogeochemistry, and for the management of both natural and artificial wetlands contaminated with antimony.Griffith Sciences, Griffith School of EnvironmentFull Tex
Insula as the Interface Between Body Awareness and Movement: A Neurofeedback-Guided Kinesthetic Motor Imagery Study in Parkinson’s Disease
Intentional movement is an internally driven process that requires the integration of motivational and sensory cues with motor preparedness. In addition to the motor cortical-basal ganglia circuits, the limbic circuits are also involved in the integration of these cues. Individuals with Parkinson’s disease (PD) have a particular difficulty with internally generating intentional movements and maintaining the speed, size, and vigor of movements. This difficulty improves when they are provided with external cues suggesting that there is a problem with the internal motivation of movement in PD. The prevailing view attributes this difficulty in PD to the dysfunction of motor cortical-basal ganglia circuits. First, we argue that the standard cortical-basal ganglia circuit model of motor dysfunction in PD needs to be expanded to include the insula which is a major hub within the limbic circuits. We propose a neural circuit model highlighting the interaction between the insula and dorsomedial frontal cortex which is involved in generating intentional movements. The insula processes a wide range of sensory signals arising from the body and integrates them with the emotional and motivational context. In doing so, it provides the impetus to the dorsomedial frontal cortex to initiate and sustain movement. Second, we present the results of our proof-of-concept experiment demonstrating that the functional connectivity of the insula-dorsomedial frontal cortex circuit can be enhanced with neurofeedback-guided kinesthetic motor imagery using functional magnetic resonance imaging in subjects with PD. Specifically, we found that the intensity and quality of body sensations evoked during motor imagery and the emotional and motivational context of motor imagery determined the direction (i.e., negative or positive) of the insula-dorsomedial frontal cortex functional connectivity. After 10–12 neurofeedback sessions and “off-line” practice of the successful motor imagery strategies all subjects showed a significant increase in the insula-dorsomedial frontal cortex functional connectivity. Finally, we discuss the implications of these results regarding motor function in patients with PD and propose suggestions for future studies
- …
