420 research outputs found

    Surface-Enhanced Raman Scattering Microspectroscopy Enables the Direct Characterization of Biomineral-Associated Organic Material on Single Calcareous Microskeletons

    Get PDF
    Biominerals are composite materials with inorganic and organic components. The latter provide insights into how organisms control mineralization and, if derived from micro/nannofossils, into past climates. Many calcifying organisms cannot be cultured or are extinct; the only materials available for their study are therefore complex environmental samples in which the organism of interest may only be a minor component. There is currently no method for characterizing the biomineral-associated organic material from single particles within such assemblages, so its compositional diversity is unknown. Focusing on coccoliths, we demonstrate that surface-enhanced Raman scattering microspectroscopy can be used to determine the origin and composition of fossil organic matter at the single-particle level in a heterogeneous micro/nannofossil assemblage. This approach may find applications in the study of micro/nannofossil assemblages and uncultivated species, providing evolutionary insights into the macromolecular repertoire involved in biomineralization

    User-modelled ambient feedback for self-regulated learning

    Get PDF
    A fundamental objective of human-computer interaction research is to make systems that are seamlessly integrated into daily life activities. Hence, the challenge is not only to make information available to people at any time, at any place, and in any form, but specifically to say the right thing at the right time in the right way. On the other hand, the proliferation of sensor technology is facilitating the scaffolding and customization of smart learning environments. This manuscript presents an ecology of resources comprising NFC, BLE and Arduino technology, orchestrated in the context of a learning environment to provide smoothly integrated feedback via ambient displays. This ecology is proposed as a suitable solution for self-regulated learning, providing support for setting goals, setting aside time to learn, tracking study time and monitoring the progress. Hereby, the ecology is described and intriguing research questions are introduced

    Sirolimus and kidney growth in autosomal dominant polycystic kidney disease

    Full text link
    BACKGROUND: In autosomal dominant polycystic kidney disease (ADPKD), aberrant activation of the mammalian target of rapamycin (mTOR) pathway is associated with progressive kidney enlargement. The drug sirolimus suppresses mTOR signaling. METHODS: In this 18-month, open-label, randomized, controlled trial, we sought to determine whether sirolimus halts the growth in kidney volume among patients with ADPKD. We randomly assigned 100 patients between the ages of 18 and 40 years to receive either sirolimus (target dose, 2 mg daily) or standard care. All patients had an estimated creatinine clearance of at least 70 ml per minute. Serial magnetic resonance imaging was performed to measure the volume of polycystic kidneys. The primary outcome was total kidney volume at 18 months on blinded assessment. Secondary outcomes were the glomerular filtration rate and urinary albumin excretion rate at 18 months. RESULTS: At randomization, the median total kidney volume was 907 cm(3) (interquartile range, 577 to 1330) in the sirolimus group and 1003 cm(3) (interquartile range, 574 to 1422) in the control group. The median increase over the 18-month period was 99 cm(3) (interquartile range, 43 to 173) in the sirolimus group and 97 cm(3) (interquartile range, 37 to 181) in the control group. At 18 months, the median total kidney volume in the sirolimus group was 102% of that in the control group (95% confidence interval, 99 to 105; P=0.26). The glomerular filtration rate did not differ significantly between the two groups; however, the urinary albumin excretion rate was higher in the sirolimus group. CONCLUSIONS: In adults with ADPKD and early chronic kidney disease, 18 months of treatment with sirolimus did not halt polycystic kidney growth. (ClinicalTrials.gov number, NCT00346918.

    Productivity of a Triticale and Crimson Clover Winter Cover Crop for Dairies

    Get PDF
    The potential for a winter cover crop to align with agronomic objectives and to support milk production was evaluated at the Kansas State University Dairy Teaching and Research Center, Manhattan, KS. August planting of a triticale and crimson clover blend following corn silage harvest resulted in production of more than 3.5 tons of dry matter prior to subsequent corn planting. After ensiling, the impact of triticale/crimson clover silage (TCS) on milk production was evaluated in 48 mid- to late-lactation Holstein cows. Cows were blocked by parity (1 and 2+) and milk production, then randomly assigned within block to treatment sequence and pen. The crossover design consisted of two 21-day periods, with 17 days of diet adaptation and 4 days of sampling. Treatments were a diet which included TCS at 15% of diet dry matter (DM) and a control ration in which TCS was primarily replaced by alfalfa and grass hays. The TCS diet included additional bypass soybean meal in an attempt to balance metabolizable protein supply across diets. Samples of rations, feed refusals, and milk were obtained daily, and milk yield was recorded. The TCS diet decreased dry matter intake (48.4 vs. 55.9 ± 3.4 lb/d; P = 0.02), but did not alter milk yield (P = 0.97); therefore, feed efficiency was greater for the TCS diet (P = 0.04). Milk fat concentration tended to increase on the TCS diet (P \u3c 0.10) whereas milk lactose yield tended to be lesser for TCS (P = 0.09), but other milk components analyzed (milk protein, MUN, SCC) did not differ between diets (P \u3e 0.15). Utilization of TCS also impacted the dairy’s nutrient management plan, as the winter forage harvest removed 40 and 340 lb/a of phosphorus and potassium, respectively. Overall, the blend of triticale and crimson clover as a winter cover crop produced good quality silage that maintained high milk production while also removing key nutrients from the soil to benefit nutrient management planning

    3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell

    Get PDF
    The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes

    Interplay of Magnetic Interactions and Active Movements in the Formation of Magnetosome Chains

    Get PDF
    Magnetotactic bacteria assemble chains of magnetosomes, organelles that contain magnetic nano-crystals. A number of genetic factors involved in the controlled biomineralization of these crystals and the assembly of magnetosome chains have been identified in recent years, but how the specific biological regulation is coordinated with general physical processes such as diffusion and magnetic interactions remains unresolved. Here, these questions are addressed by simulations of different scenarios for magnetosome chain formation, in which various physical processes and interactions are either switched on or off. The simulation results indicate that purely physical processes of magnetosome diffusion, guided by their magnetic interactions, are not sufficient for the robust chain formation observed experimentally and suggest that biologically encoded active movements of magnetosomes may be required. Not surprisingly, the chain pattern is most resembling experimental results when both magnetic interactions and active movement are coordinated. We estimate that the force such active transport has to generate is compatible with forces generated by the polymerization or depolymerization of cytoskeletal filaments. The simulations suggest that the pleiotropic phenotypes of mamK deletion strains may be due to a defect in active motility of magnetosomes and that crystal formation in magneteosome vesicles is coupled to the activation of their active motility in M. gryphiswaldense, but not in M. magneticum
    corecore