747 research outputs found

    Does the galaxy correlation length increase with the sample depth?

    Get PDF
    We have analyzed the behavior of the correlation length, r0r_0, as a function of the sample depth by extracting from the CfA2 redshift survey volume--limited samples out to increasing distances. For a fractal distribution, the value of r0r_0 would increase with the volume occupied by the sample. We find no linear increase for the CfA2 samples of the sort that would be expected if the Universe preserved its small scale fractal character out to the distances considered (60--100\hmpc). The results instead show a roughly constant value for r0r_0 as a function of the size of the sample, with small fluctuations due to local inhomogeneities and luminosity segregation. Thus the fractal picture can safely be discarded.Comment: Accepted for publication in ApJ

    Non-Gaussian CMBR angular power spectra

    Full text link
    In this paper we show how the prediction of CMBR angular power spectra ClC_l in non-Gaussian theories is affected by a cosmic covariance problem, that is (Cl,Cl)(C_l,C_{l'}) correlations impart features on any observed ClC_l spectrum which are absent from the average ClC^l spectrum. Therefore the average spectrum is rendered a bad observational prediction, and two new prediction strategies, better adjusted to these theories, are proposed. In one we search for hidden random indices conditional to which the theory is released from the correlations. Contact with experiment can then be made in the form of the conditional power spectra plus the random index distribution. In another approach we apply to the problem a principal component analysis. We discuss the effect of correlations on the predictivity of non-Gaussian theories. We finish by showing how correlations may be crucial in delineating the borderline between predictions made by non-Gaussian and Gaussian theories. In fact, in some particular theories, correlations may act as powerful non-Gaussianity indicators

    The ESO Slice Project (ESP) galaxy redshift survey: III. The Sample

    Get PDF
    The ESO Slice Project (ESP) is a galaxy redshift survey extending over about 23 square degrees, in a region near the South Galactic Pole. The survey is ~85% complete to the limiting magnitude b_J=19.4 and consists of 3342 galaxies with redshift determination. The ESP survey is intermediate between shallow, wide angle samples and very deep, one-dimensional pencil beams; the spanned volume is ~ 5 x 10^4 Mpc^3 at the sensitivity peak (z ~ 0.1). In this paper we present the description of the observations and of the data reduction, the ESP redshift catalogue and the analysis of the quality of the velocity determinations.Comment: 10 pages, 4 encapsulated figures, uses A&A LATEX; A&A Supplements in press (June 1998 issue

    Studying the evolution of large-scale structure with the VIMOS-VLT Deep Survey

    Full text link
    The VIMOS-VLT Deep Survey (VVDS) currently offers a unique combination of depth, angular size and number of measured galaxies among surveys of the distant Universe: ~ 11,000 spectra over 0.5 deg2 to I_{AB}=24 (VVDS-Deep), 35,000 spectra over ~ 7 deg2 to I_{AB}=22.5 (VVDS-Wide). The current ``First Epoch'' data from VVDS-Deep already allow investigations of galaxy clustering and its dependence on galaxy properties to be extended to redshifts ~1.2-1.5, in addition to measuring accurately evolution in the properties of galaxies up to z~4. This paper concentrates on the main results obtained so far on galaxy clustering. Overall, L* galaxies at z~ 1.5 show a correlation length r_0=3.6\pm 0.7. As a consequence, the linear galaxy bias at fixed luminosity rises over the same range from the value b~1 measured locally, to b=1.5 +/- 0.1. The interplay of galaxy and structure evolution in producing this observation is discussed in some detail. Galaxy clustering is found to depend on galaxy luminosity also at z~ 1, but luminous galaxies at this redshift show a significantly steeper small-scale correlation function than their z=0 counterparts. Finally, red galaxies remain more clustered than blue galaxies out to similar redshifts, with a nearly constant relative bias among the two classes, b_{rel}~1.4, despite the rather dramatic evolution of the color-density relation over the same redshift range.Comment: 14 pages. Extended, combined version of two invited review papers presented at: 1) XXVIth Astrophysics Moriond Meeting: "From Dark Halos to Light", March 2006, proc. edited by L.Tresse, S. Maurogordato and J. Tran Thanh Van (Editions Frontieres); 2) Vulcano Workshop 2006 "Frontier Objects in Astrophysics and Particle Physics", May 2006, proc. edited by F. Giovannelli & G. Mannocchi, Italian Physical Society (Editrice Compositori, Bologna

    The X-ray Cluster Dipole

    Get PDF
    We estimate the dipole of the whole sky X-ray flux-limited sample of Abell/ACO clusters (XBACs) and compare it to the optical Abell/ACO cluster dipole. The X-ray cluster dipole is well aligned (25\le 25^{\circ}) with the CMB dipole, while it follows closely the radial profile of its optical cluster counterpart although its amplitude is 1030\sim 10 - 30 per cent lower. In view of the fact that the the XBACs sample is not affected by the volume incompleteness and the projection effects that are known to exist at some level in the optical parent Abell/ACO cluster catalogue, our present results confirm the previous optical cluster dipole analysis that there are significant contributions to the Local Group motion from large distances (160h1\sim 160h^{-1} Mpc). In order to assess the expected contribution to the X-ray cluster dipole from a purely X-ray selected sample we compare the dipoles of the XBACs and the Brightest Cluster Sample (Ebeling et al. 1997a) in their overlap region. The resulting dipoles are in mutual good aggreement with an indication that the XBACs sample slightly underestimates the full X-ray dipole (by 5\le 5 per cent) while the Virgo cluster contributes about 10 - 15 per cent to the overall X-ray cluster dipole. Using linear perturbation theory to relate the X-ray cluster dipole to the Local group peculiar velocity we estimate the density parameter to be βcx0.24±0.05\beta_{c_{x}} \simeq 0.24 \pm 0.05.Comment: 16 pages, latex, + 4 ps figures, submitted to Ap

    Euclid Space Mission: building the sky survey

    Get PDF
    The Euclid space mission proposes to survey 15000 square degrees of the extragalactic sky during 6 years, with a step-and-stare technique. The scheduling of observation sequences is driven by the primary scientific objectives, spacecraft constraints, calibration requirements and physical properties of the sky. We present the current reference implementation of the Euclid survey and on-going work on survey optimization.Comment: to appear in Proceedings IAU Symposium No. 306, "Statistical Challenges in 21st Century Cosmology", A.F. Heavens, J.-L. Starck & A. Krone-Martins, ed

    The extended empirical process test for non-Gaussianity in the CMB, with an application to non-Gaussian inflationary models

    Get PDF
    In (Hansen et al. 2002) we presented a new approach for measuring non-Gaussianity of the Cosmic Microwave Background (CMB) anisotropy pattern, based on the multivariate empirical distribution function of the spherical harmonics a_lm of a CMB map. The present paper builds upon the same ideas and proposes several improvements and extensions. More precisely, we exploit the additional information on the random phases of the a_lm to provide further tests based on the empirical distribution function. Also we take advantage of the effect of rotations in improving the power of our procedures. The suggested tests are implemented on physically motivated models of non-Gaussian fields; Monte-Carlo simulations suggest that this approach may be very promising in the analysis of non-Gaussianity generated by non-standard models of inflation. We address also some experimentally meaningful situations, such as the presence of instrumental noise and a galactic cut in the map.Comment: 15 pages, 6 figures, submitted to Phys. Rev.

    The VIMOS Integral Field Unit: data reduction methods and quality assessment

    Get PDF
    With new generation spectrographs integral field spectroscopy is becoming a widely used observational technique. The Integral Field Unit of the VIsible Multi-Object Spectrograph on the ESO-VLT allows to sample a field as large as 54" x 54" covered by 6400 fibers coupled with micro-lenses. We are presenting here the methods of the data processing software developed to extract the astrophysical signal of faint sources from the VIMOS IFU observations. We focus on the treatment of the fiber-to-fiber relative transmission and the sky subtraction, and the dedicated tasks we have built to address the peculiarities and unprecedented complexity of the dataset. We review the automated process we have developed under the VIPGI data organization and reduction environment (Scodeggio et al. 2005), along with the quality control performed to validate the process. The VIPGI-IFU data processing environment is available to the scientific community to process VIMOS-IFU data since November 2003.Comment: 19 pages, 10 figures and 1 table. Accepted for publication in PAS
    corecore