747 research outputs found
Does the galaxy correlation length increase with the sample depth?
We have analyzed the behavior of the correlation length, , as a function
of the sample depth by extracting from the CfA2 redshift survey volume--limited
samples out to increasing distances. For a fractal distribution, the value of
would increase with the volume occupied by the sample. We find no linear
increase for the CfA2 samples of the sort that would be expected if the
Universe preserved its small scale fractal character out to the distances
considered (60--100\hmpc). The results instead show a roughly constant value
for as a function of the size of the sample, with small fluctuations due
to local inhomogeneities and luminosity segregation. Thus the fractal picture
can safely be discarded.Comment: Accepted for publication in ApJ
Non-Gaussian CMBR angular power spectra
In this paper we show how the prediction of CMBR angular power spectra
in non-Gaussian theories is affected by a cosmic covariance problem, that is
correlations impart features on any observed spectrum
which are absent from the average spectrum. Therefore the average
spectrum is rendered a bad observational prediction, and two new prediction
strategies, better adjusted to these theories, are proposed. In one we search
for hidden random indices conditional to which the theory is released from the
correlations. Contact with experiment can then be made in the form of the
conditional power spectra plus the random index distribution. In another
approach we apply to the problem a principal component analysis. We discuss the
effect of correlations on the predictivity of non-Gaussian theories. We finish
by showing how correlations may be crucial in delineating the borderline
between predictions made by non-Gaussian and Gaussian theories. In fact, in
some particular theories, correlations may act as powerful non-Gaussianity
indicators
The ESO Slice Project (ESP) galaxy redshift survey: III. The Sample
The ESO Slice Project (ESP) is a galaxy redshift survey extending over about
23 square degrees, in a region near the South Galactic Pole. The survey is ~85%
complete to the limiting magnitude b_J=19.4 and consists of 3342 galaxies with
redshift determination.
The ESP survey is intermediate between shallow, wide angle samples and very
deep, one-dimensional pencil beams; the spanned volume is ~ 5 x 10^4 Mpc^3 at
the sensitivity peak (z ~ 0.1).
In this paper we present the description of the observations and of the data
reduction, the ESP redshift catalogue and the analysis of the quality of the
velocity determinations.Comment: 10 pages, 4 encapsulated figures, uses A&A LATEX; A&A Supplements in
press (June 1998 issue
Studying the evolution of large-scale structure with the VIMOS-VLT Deep Survey
The VIMOS-VLT Deep Survey (VVDS) currently offers a unique combination of
depth, angular size and number of measured galaxies among surveys of the
distant Universe: ~ 11,000 spectra over 0.5 deg2 to I_{AB}=24 (VVDS-Deep),
35,000 spectra over ~ 7 deg2 to I_{AB}=22.5 (VVDS-Wide). The current ``First
Epoch'' data from VVDS-Deep already allow investigations of galaxy clustering
and its dependence on galaxy properties to be extended to redshifts ~1.2-1.5,
in addition to measuring accurately evolution in the properties of galaxies up
to z~4. This paper concentrates on the main results obtained so far on galaxy
clustering. Overall, L* galaxies at z~ 1.5 show a correlation length r_0=3.6\pm
0.7. As a consequence, the linear galaxy bias at fixed luminosity rises over
the same range from the value b~1 measured locally, to b=1.5 +/- 0.1. The
interplay of galaxy and structure evolution in producing this observation is
discussed in some detail. Galaxy clustering is found to depend on galaxy
luminosity also at z~ 1, but luminous galaxies at this redshift show a
significantly steeper small-scale correlation function than their z=0
counterparts. Finally, red galaxies remain more clustered than blue galaxies
out to similar redshifts, with a nearly constant relative bias among the two
classes, b_{rel}~1.4, despite the rather dramatic evolution of the
color-density relation over the same redshift range.Comment: 14 pages. Extended, combined version of two invited review papers
presented at: 1) XXVIth Astrophysics Moriond Meeting: "From Dark Halos to
Light", March 2006, proc. edited by L.Tresse, S. Maurogordato and J. Tran
Thanh Van (Editions Frontieres); 2) Vulcano Workshop 2006 "Frontier Objects
in Astrophysics and Particle Physics", May 2006, proc. edited by F.
Giovannelli & G. Mannocchi, Italian Physical Society (Editrice Compositori,
Bologna
The X-ray Cluster Dipole
We estimate the dipole of the whole sky X-ray flux-limited sample of
Abell/ACO clusters (XBACs) and compare it to the optical Abell/ACO cluster
dipole. The X-ray cluster dipole is well aligned () with the
CMB dipole, while it follows closely the radial profile of its optical cluster
counterpart although its amplitude is per cent lower. In view of
the fact that the the XBACs sample is not affected by the volume incompleteness
and the projection effects that are known to exist at some level in the optical
parent Abell/ACO cluster catalogue, our present results confirm the previous
optical cluster dipole analysis that there are significant contributions to the
Local Group motion from large distances (Mpc). In order to
assess the expected contribution to the X-ray cluster dipole from a purely
X-ray selected sample we compare the dipoles of the XBACs and the Brightest
Cluster Sample (Ebeling et al. 1997a) in their overlap region. The resulting
dipoles are in mutual good aggreement with an indication that the XBACs sample
slightly underestimates the full X-ray dipole (by per cent) while the
Virgo cluster contributes about 10 - 15 per cent to the overall X-ray cluster
dipole. Using linear perturbation theory to relate the X-ray cluster dipole to
the Local group peculiar velocity we estimate the density parameter to be
.Comment: 16 pages, latex, + 4 ps figures, submitted to Ap
Euclid Space Mission: building the sky survey
The Euclid space mission proposes to survey 15000 square degrees of the
extragalactic sky during 6 years, with a step-and-stare technique. The
scheduling of observation sequences is driven by the primary scientific
objectives, spacecraft constraints, calibration requirements and physical
properties of the sky. We present the current reference implementation of the
Euclid survey and on-going work on survey optimization.Comment: to appear in Proceedings IAU Symposium No. 306, "Statistical
Challenges in 21st Century Cosmology", A.F. Heavens, J.-L. Starck & A.
Krone-Martins, ed
The extended empirical process test for non-Gaussianity in the CMB, with an application to non-Gaussian inflationary models
In (Hansen et al. 2002) we presented a new approach for measuring
non-Gaussianity of the Cosmic Microwave Background (CMB) anisotropy pattern,
based on the multivariate empirical distribution function of the spherical
harmonics a_lm of a CMB map. The present paper builds upon the same ideas and
proposes several improvements and extensions. More precisely, we exploit the
additional information on the random phases of the a_lm to provide further
tests based on the empirical distribution function. Also we take advantage of
the effect of rotations in improving the power of our procedures. The suggested
tests are implemented on physically motivated models of non-Gaussian fields;
Monte-Carlo simulations suggest that this approach may be very promising in the
analysis of non-Gaussianity generated by non-standard models of inflation. We
address also some experimentally meaningful situations, such as the presence of
instrumental noise and a galactic cut in the map.Comment: 15 pages, 6 figures, submitted to Phys. Rev.
The VIMOS Integral Field Unit: data reduction methods and quality assessment
With new generation spectrographs integral field spectroscopy is becoming a
widely used observational technique. The Integral Field Unit of the VIsible
Multi-Object Spectrograph on the ESO-VLT allows to sample a field as large as
54" x 54" covered by 6400 fibers coupled with micro-lenses. We are presenting
here the methods of the data processing software developed to extract the
astrophysical signal of faint sources from the VIMOS IFU observations. We focus
on the treatment of the fiber-to-fiber relative transmission and the sky
subtraction, and the dedicated tasks we have built to address the peculiarities
and unprecedented complexity of the dataset. We review the automated process we
have developed under the VIPGI data organization and reduction environment
(Scodeggio et al. 2005), along with the quality control performed to validate
the process. The VIPGI-IFU data processing environment is available to the
scientific community to process VIMOS-IFU data since November 2003.Comment: 19 pages, 10 figures and 1 table. Accepted for publication in PAS
- …
