2,975 research outputs found

    A Model for Dark Matter Halos

    Full text link
    A halo model is presented which possesses a constant phase space density (Q) core followed by a radial CDM-like power law decrease in Q. The motivation for the core is the allowance for a possible primordial phase space density limit such as the Tremaine-Gunn upper bound. The space density profile derived from this model has a constant density core and falls off rapidly beyond. The new model is shown to improve the fits to the observations of LSB galaxy rotation curves, naturally provides a model which has been shown to result in a lengthened dynamical friction time scale for the Fornax dwarf spheroidal galaxy and predicts a flattening of the density profile within the Einstein radius of galaxy clusters. A constant gas entropy floor is predicted whose adiabatic constant provides a lower limit in accord with observed galaxy cluster values. While `observable-sized' cores are not seen in standard cold dark matter (CDM) simulations, phase space considerations suggest that they could appear in warm dark matter (WDM) cosmological simulations and in certain hierarchically consistent SuperWIMP scenarios.Comment: 14 pages, 3 figures, accepted for publication in Ap

    Magnetic tape transport controlled by rotating transducer heads

    Get PDF
    Magnetic tape transport includes a common drive for both the tape drive capstans and the rotating record/reproduce heads. Speed of the drive may be varied within a preselected range, but, once selected, remains constant so head and capstan are driven in synchronization and at constant speed

    Radial perturbations of the scalarized EGB black holes

    Full text link
    Recently a new class of scalarized black holes in Einstein-Gauss-Bonnet (EGB) theories was discovered. What is special for these black hole solutions is that the scalarization is not due to the presence of matter, but {it is induced} by the curvature of spacetime itself. Moreover, more than one branch of scalarized solutions can bifurcate from the Schwarzschild branch, and these scalarized branches are characterized by the number of nodes of the scalar field. The next step is to consider the linear stability of these solutions, which is particularly important due to the fact that the Schwarzschild black holes lose stability at the first point of bifurcation. Therefore we here study in detail the radial perturbations of the scalarized EGB black holes. The results show that all branches with a nontrivial scalar field with one or more nodes are unstable. The stability of the solutions on the fundamental branch, whose scalar field has no radial nodes, depends on the particular choice of the coupling function between the scalar field and the Gauss-Bonnet invariant. We consider two particular cases based on the previous studies of the background solutions. If this coupling has the form used in \cite{Doneva:2017bvd} the fundamental branch of solutions is stable, except for very small masses. In the case of a coupling function quadratic in the scalar field \cite{Silva:2017uqg}, though, the whole fundamental branch is unstable.Comment: 23 pages, 8 figure

    Reversal modes in magnetic nanotubes

    Full text link
    The magnetic switching of ferromagnetic nanotubes is investigated as a function of their geometry. Two independent methods are used: Numerical simulations and analytical calculations. It is found that for long tubes the reversal of magnetization is achieved by two mechanism: The propagation of a transverse or a vortex domain wall depending on the internal and external radii of the tube.Comment: 4 pages, 4 figure

    Cosmological Effects of Nonlinear Electrodynamics

    Full text link
    It will be shown that a given realization of nonlinear electrodynamics, used as source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way to solve two important problems in cosmology

    Low-lying even parity meson resonances and spin-flavor symmetry

    Get PDF
    A study is presented of the ss-wave meson-meson interactions involving members of the ρ\rho-nonet and of the π\pi-octet. The starting point is an SU(6) spin-flavor extension of the SU(3) flavor Weinberg-Tomozawa Lagrangian. SU(6) symmetry breaking terms are then included to account for the physical meson masses and decay constants, while preserving partial conservation of the axial current in the light pseudoscalar sector. Next, the TT-matrix amplitudes are obtained by solving the Bethe Salpeter equation in coupled-channel with the kernel built from the above interactions. The poles found on the first and second Riemann sheets of the amplitudes are identified with their possible Particle Data Group (PDG) counterparts. It is shown that most of the low-lying even parity PDG meson resonances, specially in the JP=0+J^P=0^+ and 1+1^+ sectors, can be classified according to multiplets of the spin-flavor symmetry group SU(6). The f0(1500)f_0(1500), f1(1420)f_1(1420) and some 0+(2++)0^+(2^{++}) resonances cannot be accommodated within this SU(6) scheme and thus they would be clear candidates to be glueballs or hybrids. Finally, we predict the existence of five exotic resonances (I3/2I \ge 3/2 and/or Y=2|Y|=2) with masses in the range 1.4--1.6 GeV, which would complete the 27127_1, 10310_3, and 10310_3^* multiplets of SU(3)\otimesSU(2).Comment: 43 pages, 2 figures, 61 tables. Improved discussion of Section II. To appear in Physical Review
    corecore