35 research outputs found

    Sensitivity of a Greenland ice sheet model to atmospheric forcing fields

    Get PDF
    International audiencePredicting the climate for the future and how it will impact ice sheet evolution requires coupling ice sheet models with climate models. However, before we attempt to develop a realistic coupled setup, we propose, in this study, to first analyse the impact of a model simulated climate on an ice sheet. We undertake this exercise for a set of regional and global climate models. Modelled near surface air temperature and precipitation are provided as upper boundary conditions to the GRISLI (GRenoble Ice Shelf and Land Ice model) hybrid ice sheet model (ISM) in its Greenland configuration. After 20 kyrs of simulation, the resulting ice sheets highlight the differences between the climate models. While modelled ice sheet sizes are generally comparable to the observed one, there are considerable deviations among the ice sheets on regional scales. These deviations can be explained by biases in temperature and precipitation near the coast. This is especially true in the case of global models. But the deviations between the climate models are also due to the differences in the atmospheric general circulation. To account for these differences in the context of coupling ice sheet models with climate models, we conclude that appropriate downscaling methods will be needed. In some cases, systematic corrections of the climatic variables at the interface may be required to obtain realistic results for the Greenland ice sheet (GIS)

    Greenland ice sheet contribution to sea level rise during the last interglacial period: a modelling study driven and constrained by ice core data

    No full text
    International audienceAs pointed out by the forth assessment report of the Intergovernmental Panel on Climate Change, IPCC-AR4 (Meehl et al., 2007), the contribution of the two major ice sheets, Antarctica and Greenland, to global sea level rise, is a subject of key importance for the scientific community. By the end of the next century, a 3–5 °C warming is expected in Greenland. Similar temperatures in this region were reached during the last interglacial (LIG) period, 130–115 ka BP, due to a change in orbital configuration rather than to an anthropogenic forcing. Ice core evidence suggests that the Greenland ice sheet (GIS) survived this warm period, but great uncertainties remain about the total Greenland ice reduction during the LIG. Here we perform long-term simulations of the GIS using an improved ice sheet model. Both the methodologies chosen to reconstruct palaeoclimate and to calibrate the model are strongly based on proxy data. We suggest a relatively low contribution to LIG sea level rise from Greenland melting, ranging from 0.7 to 1.5 m of sea level equivalent, contrasting with previous studies. Our results suggest an important contribution of the Antarctic ice sheet to the LIG highstand

    Natural forcing of climate during the last millennium: fingerprint of solar variability

    No full text
    International audienc

    How does the atmospheric variability drive the aerosol residence time in the Arctic region?

    No full text
    International audienceThis paper aims at characterizing the impact of the atmospheric variability on the aerosol burden and residence time in the Arctic region. For this purpose, a global simulation using an emissions inventory from the year 2000 is performed for the period 2000-2005. The model thus describes a 6-year evolution of sulphate, black carbon (BC) and mineral dust, whose variability is driven by the atmosphere only. Our simulation is validated thanks to comparisons with surface observations. The aerosol residence time takes minimum values in fall: 4 days for sulphate and 8 days for BC and dust. It takes maximum values in June: 10 days for sulphate and 16 days for BC and dust. However, from one spring to another, it can vary by about 50% for sulphate, 40% for BC and 100% for dust, depending on the atmospheric variability. In June, sulphate, BC and dust burden averaged over the Arctic region reach respectively maximums of 1.9 mg[S] m-², 0.2 mg m-² and 6 mg m-², characteristic of the so-called "Arctic haze". From one year to another, these values can vary by 20% for sulphate, 10% for BC and 60% for dust

    Simulation du climat récent et futur par les modèles du CNRM et de l'IPSL

    No full text
    Dans le cadre de la préparation du 4e rapport du Groupe intergouvernemental sur l'évolution du climat (Giec), qui doit paraître début 2007, les principales équipes de modélisation de par le monde ont réalisé un important exercice coordonné de simulation de l'évolution du climat au cours des XXe et XXIe siècles. Nous présentons ici les résultats obtenus par les modèles du CNRM et de l'IPSL, en évoquant les progrès réalisés depuis le précédent rapport du Giec. Nous replaçons également nos résultats par rapport à ceux des autres modèles, et indiquons les résultats qui sont communs à l'ensemble des modèles et ceux qui peuvent être différents

    Une démarche prospective pour préparer l'agriculture à la raréfaction future de l'eau

    No full text
    International audienceThis paper describes how participatory foresight methodologies can be used to identify long term (2050) agricultural impacts of increasing water scarcity and drought risk aw well as adaptive strategies. It is based on a case study conducted in Mediterranean Southern France as part of two long term research projects on hydroclimatic change. The methodology consisted in organising foresight seminars with a group of experts and three groups of farmers. Participants were first invited to react and debate on four visions of regional agriculture in 2030, constructed by researchers before the seminars. A second series of workshops was then organised to analyse how these scenarios could be affected by climate change. These workshops were based on the results of the VULCAIN research project (http://agire.brgm.fr/VULCAIN.htm) which estimated future climatic changes (temperatures, rainfall, evapo-transpiration) and resulting hydrological impacts (decrease of river base flow,longer drought periods). The communication describes this participatory process and its outcomeCet article présente une démarche de prospective participative visant à identifier les impacts à long terme (2050) pour le secteur agricole d'un accroissement de la rareté de l'eau et du risque de sécheresse ainsi que les stratégies d'adaptations. Il s'appuie sur un cas d'étude réalisé dans le sud de la France, dans le cadre de deux projets de recherche portant sur le changement hydro-climatique. La méthodologie mise en oeuvre consiste à organiser des ateliers de prospective avec un groupe d'experts d'une part, et trois groupes d'agriculteurs d'autres parts. Les participants aux ateliers ont d'abord été invités à réagir sur des visions préétablies de l'agriculture en 2030. Une deuxième série d'ateliers a ensuite été organisée pour analyser comment l'agriculture correspondant à chacune de ces quatre visions pourrait être impactée par le changement climatique et hydrologique. Cette deuxième série d'ateliers est basée sur les résultats du projet VULCAIN qui a permis d'estimé les changements climatiques futurs à l'échelle régionale (températures, précipitations, évapotranspiration) ainsi que les conséquences hydrologiques de ces changements (variation du régime des cours d'eau). L'article décrit le processus participatif mis en place et les principaux résultats qui en ressortent
    corecore