74 research outputs found

    Highly charged ion X-rays from Electron-Cyclotron Resonance Ion Sources

    Get PDF
    Radiation from the highly-charged ions contained in the plasma of Electron-Cyclotron Resonance Ion Sources constitutes a very bright source of X-rays. Because the ions have a relatively low kinetic energy (1\approx 1 eV) transitions can be very narrow, containing only small Doppler broadening. We describe preliminary accurate measurements of two and three-electron ions with Z=16--18. We show how these measurement can test sensitively many-body relativistic calculations or can be used as X-ray standards for precise measurements of X-ray transitions in exotic atoms

    High-pressure operation of a xenon-GPSC/MSGC hybrid detector for hard X-ray spectrometry

    Get PDF
    The performance of a high-pressure xenon gas proportional scintillation counter/microstrip gas chamber (GPSC/MSGC) hybrid detector has been investigated for filling pressures from 1 up to 10 bar, for 22-, 30- and 60-keV photons. GPSC/MSGC hybrid detectors are based on a xenon-GPSC instrumented with a CsI-coated microstrip plate photosensor placed directly within the xenon envelope, as a substitute for the photomultiplier tube. This design avoids the constraints due to the use of a quartz scintillation window for GPSC-photosensor coupling, which absorbs a significant amount of scintillation and is a drawback for applications where large detection areas and high filling pressures are needed. The lowest energy resolutions are achieved for 2 bar (5.5% and 3.4%, FWHM, for 22- and 60-keV photons, respectively). Increasing the pressure to the 5-6 bar range, competitive energy resolutions of 7% and 4.5% are still achieved for 22- and 60-keV photons, respectively. This detector could be a compelling alternative in applications where compactness, large detection area, insensitivity to strong magnetic fields, room temperature operation, large signal-to-noise ratio and good energy resolution are important requirements.http://www.sciencedirect.com/science/article/B6TJM-4M3B6DG-8/1/04ba8b77386c4c69025c7ca19342f79

    Pionic Deuterium

    Get PDF
    The strong interaction shift and broadening in pionic deuterium have been remeasured with high statistics by means of the (3p-1s) X-ray transition using the cyclotron trap and a high-resolution crystal spectrometer. Preliminary results are (-2325+/-31) meV (repulsive) for the shift and (1171+23/-49} meV for the width, which yields precise values for the pion-deuteron scattering length and the threshold parameter for pion production.Comment: Conf. Proc. Few Body 19 (FB19), August 31 - September 5, 2009, Bonn, Germany 9 pages, 13 figure

    Line shape of the muH(3p - 1s) hyperfine transitions

    Get PDF
    The (3p - 1s) X-ray transition to the muonic hydrogen ground state was measured with a high resolution crystal spectrometer. A Doppler effect broadening of the X-ray line was established which could be attributed to different Coulomb de-excitation steps preceding the measured transition. The assumption of a statistical population of the hyperfine levels of the muonic hydrogen ground state was directly confirmed by the experiment and measured values for the hyperfine splitting can be reported. The results allow a decisive test of advanced cascade model calculations and establish a method to extract fundamental strong-interaction parameters from pionic hydrogen experiments.Comment: Submitted to Physical Review Letter

    Precision determination of the dpi -> NN transition strength at threshold

    Get PDF
    An unusual but effective way to determine at threshold the dpi -> NN transition strength is to exploit the hadronic ground-state broadening in pionic deuterium, accessible by x-ray spectroscopy. The broadening is dominated by the true absorption channel dpi- -> nn, which is related to s-wave pion production pp -> dpi+ by charge symmetry and detailed balance. Using the exotic atom circumvents the problem of Coulomb corrections to the cross section as necessary in the production experiments. Our dedicated measurement finds (1171+23/-49) meV for the broadening yielding (252+5/-11) \mub.Comment: 4 pages, 2 figures, 1 tabl

    Line shape analysis of the Kβ\beta transition in muonic hydrogen

    Full text link
    The Kβ\beta transition in muonic hydrogen was measured with a high-resolution crystal spectrometer. The spectrum is shown to be sensitive to the ground-state hyperfine splitting, the corresponding triplet-to-singlet ratio, and the kinetic energy distribution in the 3p3p state. The hyperfine splitting and triplet-to-singlet ratio are found to be consistent with the values expected from theoretical and experimental investigations and, therefore, were fixed accordingly in order to reduce the uncertainties in the further reconstruction of the kinetic energy distribution. The presence of high-energetic components was established and quantified in both a phenomenological, i.e. cascade-model-free fit, and in a direct deconvolution of the Doppler broadening based on the Bayesian approach.Comment: 22 pages, 21 figure

    THGEM-based detectors for sampling elements in DHCAL: laboratory and beam evaluation

    Get PDF
    We report on the results of an extensive R&D program aimed at the evaluation of Thick-Gas Electron Multipliers (THGEM) as potential active elements for Digital Hadron Calorimetry (DHCAL). Results are presented on efficiency, pad multiplicity and discharge probability of a 10x10 cm2 prototype detector with 1 cm2 readout pads. The detector is comprised of single- or double-THGEM multipliers coupled to the pad electrode either directly or via a resistive anode. Investigations employing standard discrete electronics and the KPiX readout system have been carried out both under laboratory conditions and with muons and pions at the CERN RD51 test beam. For detectors having a charge-induction gap, it has been shown that even a ~6 mm thick single-THGEM detector reached detection efficiencies above 95%, with pad-hit multiplicity of 1.1-1.2 per event; discharge probabilities were of the order of 1e-6 - 1e-5 sparks/trigger, depending on the detector structure and gain. Preliminary beam tests with a WELL hole-structure, closed by a resistive anode, yielded discharge probabilities of <2e-6 for an efficiency of ~95%. Methods are presented to reduce charge-spread and pad multiplicity with resistive anodes. The new method showed good prospects for further evaluation of very thin THGEM-based detectors as potential active elements for DHCAL, with competitive performances, simplicity and robustness. Further developments are in course.Comment: 15 pages, 11 figures, MPGD2011 conference proceedin

    The proton radius puzzle

    Full text link
    High-precision measurements of the proton radius from laser spectroscopy of muonic hydrogen demonstrated up to six standard deviations smaller values than obtained from electron-proton scattering and hydrogen spectroscopy. The status of this discrepancy, which is known as the proton radius puzzle will be discussed in this paper, complemented with the new insights obtained from spectroscopy of muonic deuterium.Comment: Moriond 2017 conference, 8 pages, 4 figure

    Improved X-ray detection and particle identification with avalanche photodiodes

    Full text link
    Avalanche photodiodes are commonly used as detectors for low energy x-rays. In this work we report on a fitting technique used to account for different detector responses resulting from photo absorption in the various APD layers. The use of this technique results in an improvement of the energy resolution at 8.2 keV by up to a factor of 2, and corrects the timing information by up to 25 ns to account for space dependent electron drift time. In addition, this waveform analysis is used for particle identification, e.g. to distinguish between x-rays and MeV electrons in our experiment.Comment: 6 pages, 6 figure
    corecore