633 research outputs found

    The Economics of Healthcare Rationing

    Get PDF
    This article examines the economics of healthcare rationing. We begin with an overview of the various dimensions across which healthcare rationing operates, or at least has the potential to operate, in the first place. We then describe the types of economic analyses used in healthcare rationing decision-making, with particular reference to cost-benefit analysis and cost-effectiveness analysis. We also discuss healthcare rationing in practice, such as how economic analyses inform decisions regarding which services to cover, and conclude by discussing various practical and conceptual challenges that may arise with economic analyses and that span both economics and ethics

    Identification of Decoherence-Free Subspaces Without Quantum Process Tomography

    Full text link
    Characterizing a quantum process is the critical first step towards applying such a process in a quantum information protocol. Full process characterization is known to be extremely resource-intensive, motivating the search for more efficient ways to extract salient information about the process. An example is the identification of "decoherence-free subspaces", in which computation or communications may be carried out, immune to the principal sources of decoherence in the system. Here we propose and demonstrate a protocol which enables one to directly identify a DFS without carrying out a full reconstruction. Our protocol offers an up-to-quadratic speedup over standard process tomography. In this paper, we experimentally identify the DFS of a two-qubit process with 32 measurements rather than the usual 256, characterize the robustness and efficiency of the protocol, and discuss its extension to higher-dimensional systems.Comment: 6 pages, 5 figure

    Adaptive quantum state tomography improves accuracy quadratically

    Get PDF
    We introduce a simple protocol for adaptive quantum state tomography, which reduces the worst-case infidelity between the estimate and the true state from O(N−1/2)O(N^{-1/2}) to O(N−1)O(N^{-1}). It uses a single adaptation step and just one extra measurement setting. In a linear optical qubit experiment, we demonstrate a full order of magnitude reduction in infidelity (from 0.10.1% to 0.010.01%) for a modest number of samples (N=3×104N=3\times10^4).Comment: 8 pages, 7 figure

    Scalable Spatial Super-Resolution using Entangled Photons

    Full text link
    N00N states -- maximally path-entangled states of N photons -- exhibit spatial interference patterns sharper than any classical interference pattern. This is known as super-resolution. However, even with perfectly efficient number-resolving detectors, the detection efficiency of all previously demonstrated methods to measure such interference decreases exponentially with the number of photons in the N00N state, often leading to the conclusion that N00N states are unsuitable for spatial measurements. Here, we create spatial super-resolution fringes with two-, three-, and four-photon N00N states, and demonstrate a scalable implementation of the so-called ``optical centroid measurement'' which provides an in-principle perfect detection efficiency. Moreover, we compare the N00N-state interference to the corresponding classical super-resolution interference. Although both provide the same increase in spatial frequency, the visibility of the classical fringes decreases exponentially with the number of detected photons, while the visibility of our experimentally measured N00N-state super-resolution fringes remains approximately constant with N. Our implementation of the optical centroid measurement is a scalable method to measure high photon-number quantum interference, an essential step forward for quantum-enhanced measurements, overcoming what was believed to be a fundamental challenge to quantum metrology

    Acid-Labile Traceless Click Linker for Protein Transduction

    Get PDF
    Intracellular delivery of active proteins presents an interesting approach in research and therapy. We created a protein transduction shuttle based on a new traceless click linker that combines the advantages of click reactions with implementation of reversible pH-sensitive bonds. The azidomethyl-methylmaleic anhydride (AzMMMan) linker was found compatible with different click chemistries, demonstrated in bioreversible protein modification with dyes, polyethylene glycol, or a transduction carrier. Linkages were stable at physiological pH but reversible at the mild acidic pH of endosomes or lysosomes. We show that pH-reversible attachment of a defined endosome-destabilizing three-arm oligo(ethane amino)amide carrier generates an effective shuttle for protein delivery. The cargo protein nlsEGFP, when coupled via the traceless AzMMMan linker, experiences efficient cellular uptake and endosomal escape into the cytosol, followed by import into the nucleus. In contrast, irreversible linkage to the same shuttle hampers nuclear delivery of nlsEGFP which after uptake remains trapped in the cytosol. Successful intracellular delivery of bioactive ß-galactosidase as a model enzyme was also demonstrated using the pH-controlled shuttle system

    On the correct formula for the lifetime broadened superconducting density of states

    Full text link
    We argue that the well known Dynes formula [Dynes R C {\it et al.} 1978 {\it Phys. Rev. Lett.} {\bf 41} 1509] for the superconducting quasiparticle density of states, which tries to incorporate the lifetime broadening in an approximate way, cannot be justified microscopically for conventional superconductors. Instead, we propose a new simple formula in which the energy gap has a finite imaginary part −Δ2-\Delta_2 and the quasiparticle energy is real. We prove that in the quasiparticle approximation 2Δ2\Delta_2 gives the quasiparticle decay rate at the gap edge for conventional superconductors. This conclusion does not depend on the nature of interactions that cause the quasiparticle decay. The new formula is tested on the case of a strong coupling superconductor Pb0.9_{0.9}Bi0.1_{0.1} and an excellent agreement with theoretical predictions is obtained. While both the Dynes formula and the one proposed in this work give good fits and fit parameters for Pb0.9_{0.9}Bi0.1_{0.1}, only the latter formula can be justified microscopically.Comment: 6 pages, 4 figure

    Shedding light on sporopollenin chemistry, with reference to UV reconstructions

    Get PDF
    Sporopollenin, which forms the outer wall of pollen and spores, contains a chemical signature of ultraviolet-B flux via concentrations of UV-B absorbing compounds (UACs), providing a proxy for reconstructing UV irradiance through time. Although Fourier transform infrared (FTIR) spectroscopy provides an efficient means of measuring UAC concentrations, nitrogen-containing compounds have the potential to bias the aromatic and hydroxyl bands used to quantify and standardise UAC abundances. Here, we explore the presence and possible influence of nitrogen in UV reconstruction via an FTIR study of Lycopodium spores from a natural shading gradient. We show that the UV-sensitive aromatic peak at 1510 cm− 1 is clearly distinguishable from the amide II peak at 1550 cm− 1, and the decrease in aromatic content with increased shading can be reconstructed using standardisation approaches that do not rely on the 3300 cm− 1 hydroxyl band. Isolation of the sporopollenin results in the loss of nitrogen-related peaks from the FTIR spectra, while the aromatic gradient remains. This confirms the lack of nitrogen in sporopollenin and its limited potential for impacting on palaeo-UV reconstructions. FTIR is therefore an appropriate tool for quantifying UACs in spores and pollen, and information on UV flux should be obtainable from fossil or processed samples

    Personalized Optical Designs and Manipulating Optics: Applications on the Anterior Segment of the Eye

    Get PDF
    The image-forming properties of the eye can be described in terms of wave aberration. Understanding the link between aberrations and the anterior segment geometry is therefore of crucial importance for (i) comprehending how the eye works, (ii) modelling the optics of individual eyes, (iii) optimizing optical solutions, or (iv) designing surgical strategies. The eye has many innate adaptations that minimize optical aberrations. In most normal young eyes, the magnitude of aberrations of the cornea is significantly larger than for the whole eye, indicating a significant role of the crystalline lens in compensating corneal aberrations. However, due to geometrical and structural changes, this ocular compensation gets disturbed in different anterior segment conditions, such as keratoconus, presbyopia, or cataract. Keratoconus progressively degrades the corneal shape and, consequently, vision in the adolescence, with a prevalence of 0.05% in the general population. Meanwhile, presbyopia and cataract are conditions related to aging that affect the structure of the crystalline lens, one referring to a loss in accommodative amplitude (presbyopia) and the other to a progressive loss of transparency (cataract). Presbyopia affects 100% of the population older than 45¿years of age, ..

    Implementation of an outdoor smoke-free policy at sports clubs: Critical situations and determinants influencing implementation

    Get PDF
    Background Outdoor smoke-free policies (SFPs) at sports clubs have significant potential to reduce adolescent smoking. However, the realization of this potential may be strongly dependent on how these policies are implemented in practice. The aim of this study is to explore the perceptions of key stakeholders at different sports clubs in the Netherlands concerning how outdoor SFPs are implemented in practice and which determinants influence implementation. Methods Semi-structured interviews were held with 46 key stakeholders at eight Dutch sports clubs (i.e., field hockey, soccer, tennis, korfball) with an outdoor SFP. A thematic approach was used for the analysis of the transcripts. Results Overall, respondents perceived the implementation of an outdoor SFP at sports clubs as feasible. The SFP is often enforced, people who smoke react positively when they are approached, the SFP has led to less (visible) smoking at the venue, and a nonsmoking norm is reinforced. However, we identified three ‘critical situations’ in which implementation is less than optimal: 1) when children are not present at the sports club, 2) when alcohol is involved, and 3) when people who smoke relocate to the entrance of the sports club. Several determinants influenced implementation in those critical situations: 1) determinants related to individual smokers and club members (i.e., support, communication towards people who smoke), 2) determinants related to the SFP itself (i.e., clarity of the policy), 3) determinants related to the sports club (i.e., communication of the policy, characteristics of the sports club), and 4) determinants related to the wider community (i.e., change of social norm with regard to smoking, support from local and national organizations). Conclusion Implementation of an outdoor SFP at sports clubs is feasible because there is a high level of support and experiences are mainly positive. Nevertheless, some situations present challenges to compliance and enforcement. We identified a number of determinants that may facilitate implementation of an outdoor SFP at sports clubs

    Genuine Counterfactual Communication with a Nanophotonic Processor

    Full text link
    In standard communication information is carried by particles or waves. Counterintuitively, in counterfactual communication particles and information can travel in opposite directions. The quantum Zeno effect allows Bob to transmit a message to Alice by encoding information in particles he never interacts with. The first suggested protocol not only required thousands of ideal optical components, but also resulted in a so-called "weak trace" of the particles having travelled from Bob to Alice, calling the scalability and counterfactuality of previous proposals and experiments into question. Here we overcome these challenges, implementing a new protocol in a programmable nanophotonic processor, based on reconfigurable silicon-on-insulator waveguides that operate at telecom wavelengths. This, together with our telecom single-photon source and highly-efficient superconducting nanowire single-photon detectors, provides a versatile and stable platform for a high-fidelity implementation of genuinely trace-free counterfactual communication, allowing us to actively tune the number of steps in the Zeno measurement, and achieve a bit error probability below 1%, with neither post-selection nor a weak trace. Our demonstration shows how our programmable nanophotonic processor could be applied to more complex counterfactual tasks and quantum information protocols.Comment: 6 pages, 4 figure
    • …
    corecore