5,673 research outputs found
Polynomial Relations in the Centre of U_q(sl(N))
When the parameter of deformation q is a m-th root of unity, the centre of
U_q(sl(N))$ contains, besides the usual q-deformed Casimirs, a set of new
generators, which are basically the m-th powers of all the Cartan generators of
U_q(sl(N)). All these central elements are however not independent. In this
letter, generalising the well-known case of U_q(sl(2)), we explicitly write
polynomial relations satisfied by the generators of the centre. Application to
the parametrization of irreducible representations and to fusion rules are
sketched.Comment: 8 pages, minor TeXnical revision to allow automatic TeXin
Transient catchment hydrology after wildfires in a Mediterranean basin: runoff, sediment and woody debris
International audienceThe transient effect of forest fires on runoff, erosion and yield of woody biomass has been investigated by combining the experimental approach with mathematical models of hydrological processes. The case study is the Branega creek in Liguria, Italy, where a forest fire in August 2003 caused substantial changes to soil and vegetation, and left a considerable amount of woody debris on the ground. Immediately after the fire, rainfall simulator experiments in adjacent burned and unburned plots showed the extent to which fire had increased runoff and erosion rates. A distributed hydrological model using the tube-flux approach, calibrated on experimental measurements, has been used to investigate hill slope and channel erosion in a small sub-catchment, 1.5 ha in area, nested in the Branega basin. Simulation runs show that the model accommodates the observed variability of runoff and erosion under disturbed and undisturbed conditions. A model component describing the delivery of wood from hill slopes to the channel in post-fire conditions, validated against local survey data, showed that the removal and transport of woody biomass can be reproduced using an integrated hydrological approach. Hence, transient complexity after wildfires can be addressed by such an approach with empirically determined physically-based parameters
Roughness at the depinning threshold for a long-range elastic string
In this paper, we compute the roughness exponent zeta of a long-range elastic
string, at the depinning threshold, in a random medium with high precision,
using a numerical method which exploits the analytic structure of the problem
(`no-passing' theorem), but avoids direct simulation of the evolution
equations. This roughness exponent has recently been studied by simulations,
functional renormalization group calculations, and by experiments (fracture of
solids, liquid meniscus in 4He). Our result zeta = 0.390 +/- 0.002 is
significantly larger than what was stated in previous simulations, which were
consistent with a one-loop renormalization group calculation. The data are
furthermore incompatible with the experimental results for crack propagation in
solids and for a 4He contact line on a rough substrate. This implies that the
experiments cannot be described by pure harmonic long-range elasticity in the
quasi-static limit.Comment: 4 pages, 3 figure
Genomics knowledge and attitudes among European public health professionals. Results of a cross-sectional survey
Background The international public health (PH) community is debating the opportunity to incorporate genomic technologies into PH practice. A survey was conducted to assess attitudes of the European Public Health Association (EUPHA) members towards their role in the implementation of public health genomics (PHG), and their knowledge and attitudes towards genetic testing and the delivery of genetic services. Methods EUPHA members were invited via monthly newsletter and e-mail to take part in an online survey from February 2017 to January 2018. A descriptive analysis of knowledge and attitudes was conducted, along with a univariate and multivariate analysis of their determinants. Results Five hundred and two people completed the questionnaire, 17.9% were involved in PHG activities. Only 28.9% correctly identified all medical conditions for which there is (or not) evidence for implementing genetic testing; over 60% thought that investing in genomics may divert economic resources from social and environmental determinants of health. The majority agreed that PH professionals may play different roles in incorporating genomics into their activities. Better knowledge was associated with positive attitudes towards the use of genetic testing and the delivery of genetic services in PH (OR = 1.48; 95% CI 1.01–2.18). Conclusions Our study revealed quite positive attitudes, but also a need to increase awareness on genomics among European PH professionals. Those directly involved in PHG activities tend to have a more positive attitude and better knowledge; however, gaps are also evident in this group, suggesting the need to harmonize practice and encourage greater exchange of knowledge among professionals
Maximum Distance Between the Leader and the Laggard for Three Brownian Walkers
We consider three independent Brownian walkers moving on a line. The process
terminates when the left-most walker (the `Leader') meets either of the other
two walkers. For arbitrary values of the diffusion constants D_1 (the Leader),
D_2 and D_3 of the three walkers, we compute the probability distribution
P(m|y_2,y_3) of the maximum distance m between the Leader and the current
right-most particle (the `Laggard') during the process, where y_2 and y_3 are
the initial distances between the leader and the other two walkers. The result
has, for large m, the form P(m|y_2,y_3) \sim A(y_2,y_3) m^{-\delta}, where
\delta = (2\pi-\theta)/(\pi-\theta) and \theta =
cos^{-1}(D_1/\sqrt{(D_1+D_2)(D_1+D_3)}. The amplitude A(y_2,y_3) is also
determined exactly
Vapor pressure measurements over supercooled water in the temperature range from −10 1 °C to +10 −2 °C
An accurate measurement of saturation vapor pressure of supercooled water is a strong challenge in
metrology, mainly due to difficulties concerning keeping water at a liquid state at temperatures well
below the melting point; thus few experimental data covering limited temperature ranges (down to
about 253 K) are reported in literature. For this reason, an investigation of the water vapor – supercooled
water equilibrium along the saturation line is carried out at Istituto Nazionale di Ricerca Metrologica
(INRIM).
Measurements cover the temperature range from 261.26 K to 273.25 K, corresponding to a saturation
vapor pressure from about 244 Pa to 611 Pa. The experimental apparatus includes a borosilicate glass
sample cell, kept in a liquid bath at a constant temperature with millikelvin stability and connected to
a manifold where the pressure is measured using a capacitive diaphragm pressure gauge.
In this work, the water sample preparation, the measuring method and measurement corrections are
reported; moreover, a comparison between experimental and literature data is conducted along with
the most used vapor pressure formulations. Measurement results are discussed and uncertainty sources
estimated. The resulting expanded relative uncertainty (k = 2) varies from 0.085% at 261.26 K to 0.039% at
273.25 K
Performance of the Fully Digital FPGA-based Front-End Electronics for the GALILEO Array
In this work we present the architecture and results of a fully digital Front
End Electronics (FEE) read out system developed for the GALILEO array. The FEE
system, developed in collaboration with the Advanced Gamma Tracking Array
(AGATA) collaboration, is composed of three main blocks: preamplifiers,
digitizers and preprocessing electronics. The slow control system contains a
custom Linux driver, a dynamic library and a server implementing network
services. The digital processing of the data from the GALILEO germanium
detectors has demonstrated the capability to achieve an energy resolution of
1.53 per mil at an energy of 1.33 MeV.Comment: 5 pages, 6 figures, preprint version of IEEE Transactions on Nuclear
Science paper submitted for the 19th IEEE Real Time Conferenc
Multi-heme Cytochromes in Shewanella oneidensis MR-1:Structures, functions and opportunities
Multi-heme cytochromes are employed by a range of microorganisms to transport electrons over distances of up to tens of nanometers. Perhaps the most spectacular utilization of these proteins is in the reduction of extracellular solid substrates, including electrodes and insoluble mineral oxides of Fe(III) and Mn(III/IV), by species of Shewanella and Geobacter. However, multi-heme cytochromes are found in numerous and phylogenetically diverse prokaryotes where they participate in electron transfer and redox catalysis that contributes to biogeochemical cycling of N, S and Fe on the global scale. These properties of multi-heme cytochromes have attracted much interest and contributed to advances in bioenergy applications and bioremediation of contaminated soils. Looking forward there are opportunities to engage multi-heme cytochromes for biological photovoltaic cells, microbial electrosynthesis and developing bespoke molecular devices. As a consequence it is timely to review our present understanding of these proteins and we do this here with a focus on the multitude of functionally diverse multi-heme cytochromes in Shewanella oneidensis MR-1. We draw on findings from experimental and computational approaches which ideally complement each other in the study of these systems: computational methods can interpret experimentally determined properties in terms of molecular structure to cast light on the relation between structure and function. We show how this synergy has contributed to our understanding of multi-heme cytochromes and can be expected to continue to do so for greater insight into natural processes and their informed exploitation in biotechnologies
Width distribution of contact lines on a disordered substrate
We have studied the roughness of a contact line of a liquid meniscus on a
disordered substrate by measuring its width distribution. The comparison
between the measured width distribution and the width distribution calculated
in previous works, extended here to the case of open boundary conditions,
confirms that the Joanny-de Gennes model is not sufficient to describe the
dynamics of contact lines at the depinning threshold. This conclusion is in
agreement with recent measurements which determine the roughness exponent by
extrapolation to large system sizes.Comment: 4 pages, 3 figure
Mixing Bandt-Pompe and Lempel-Ziv approaches: another way to analyze the complexity of continuous-states sequences
In this paper, we propose to mix the approach underlying Bandt-Pompe
permutation entropy with Lempel-Ziv complexity, to design what we call
Lempel-Ziv permutation complexity. The principle consists of two steps: (i)
transformation of a continuous-state series that is intrinsically multivariate
or arises from embedding into a sequence of permutation vectors, where the
components are the positions of the components of the initial vector when
re-arranged; (ii) performing the Lempel-Ziv complexity for this series of
`symbols', as part of a discrete finite-size alphabet. On the one hand, the
permutation entropy of Bandt-Pompe aims at the study of the entropy of such a
sequence; i.e., the entropy of patterns in a sequence (e.g., local increases or
decreases). On the other hand, the Lempel-Ziv complexity of a discrete-state
sequence aims at the study of the temporal organization of the symbols (i.e.,
the rate of compressibility of the sequence). Thus, the Lempel-Ziv permutation
complexity aims to take advantage of both of these methods. The potential from
such a combined approach - of a permutation procedure and a complexity analysis
- is evaluated through the illustration of some simulated data and some real
data. In both cases, we compare the individual approaches and the combined
approach.Comment: 30 pages, 4 figure
- …
