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Abstract. In this paper, we propose to mix the approach underlying Bandt-Pompe permutation entropy
with Lempel-Ziv complexity, to design what we call Lempel-Ziv permutation complexity. The principle
consists of two steps: (i) transformation of a continuous-state series that is intrinsically multivariate or
arises from embedding into a sequence of permutation vectors, where the components are the positions of
the components of the initial vector when re-arranged; (ii) performing the Lempel-Ziv complexity for this
series of ‘symbols’, as part of a discrete finite-size alphabet. On the one hand, the permutation entropy
of Bandt-Pompe aims at the study of the entropy of such a sequence; i.e., the entropy of patterns in a
sequence (e.g., local increases or decreases). On the other hand, the Lempel-Ziv complexity of a discrete-
state sequence aims at the study of the temporal organization of the symbols (i.e., the rate of compressibility
of the sequence). Thus, the Lempel-Ziv permutation complexity aims to take advantage of both of these
methods. The potential from such a combined approach – of a permutation procedure and a complexity
analysis – is evaluated through the illustration of some simulated data and some real data. In both cases,
we compare the individual approaches and the combined approach.

1 Introduction1

Many real signals result from very complex dynamics2

and/or from coupled dynamics of many dimensional sys-3

tems. Various examples can be found in biology, such as4

the reaction-diffusion process in cardiac electrical propa-5

gation that provides electrocardiograms, and the collective6

actions of genes for the production of proteins in specific7

quantities [1–3]. In finance, there is the example of the8

variation in the price of an asset, which results from the9

collective actions of the buyers and sellers [4], while statis-10

tical physics and social sciences also have huge numbers11

of situations where ‘complexity’ emerges [5]. One of the12

challenges is to describe these complex signals in a simple13

way, to allow meaningful and relevant information to be14

extracted [6–10].15

The complex origin of such signals has led researchers16

to analyze these signals through tools that come either17

from the ‘probability world’, or conversely, from ‘nonlin-18

ear dynamics’. The purpose is to characterize the degree of19

information or the complexity of the signals under analy-20

sis as well as possible. The first approach is statistical, and21

a e-mail: steeve.zozor@gipsa-lab.grenoble-inp.fr

the goal is to measure the spread of the distribution under- 22

lying the data, or to detect any changes in the statistics. 23

The common tools that are used here come from infor- 24

mation theory [8,9,11–13], or are correlation measures [3], 25

or come from spectral analysis [14]. The second approach 26

is devoted to signals that are produced by deterministic 27

(generally nonlinear) mechanisms, even if the sequence un- 28

der analysis can appear to be somewhat ‘random’. The 29

tools generally used for the description of such complex 30

signals come often from the chaos world, like Lyapunov 31

exponents, fractal dimensions, and others [6], or from the 32

concept of complexity in the sense of Kolmogorov (e.g., 33

Lempel-Ziv complexity) [7,10,15–17]. 34

The measures from information theory are very pow- 35

erful, in a sense that they allow the quantification of a 36

degree of uncertainty (the rate) of a random sequence, 37

or of a sequence considered as randomly generated. How- 38

ever, tools such as entropies can have some drawbacks 39

when used in practice. One of these occurs when dealing 40

with continuous-state data. In this case, the estimation 41

of a differential entropy from the data is not always an 42

easy task [18–20]. Some nonparametric estimators make 43

use of nearest neighbors, or of graph lengths, although 44

their properties are difficult to study [18–22]. More simple 45
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estimators are based on ‘plug-in’ approaches [18]; namely,1

the density is estimated using a Parzen-Rosenblatt ap-2

proach [23,24], and the estimation is plugged into the3

mathematical expression of the entropy. The most sim-4

ple density estimator is based on a histogram, which is5

equivalent to quantization of the data. The estimation6

performance depends on this quantization (e.g., number7

of thresholds, quantization intervals). To overcome this8

potential difficulty, Bandt and Pompe proposed (i) to con-9

struct the multivariate trajectories from the scalar series,10

i.e., an embedding; and (ii) to work with the so-called11

vectors of permutation, i.e., for each point of the trajec-12

tory, its components are sorted, and each component of13

the point is replaced by its position (rank) in the rear-14

ranged components [25]. Bandt and Pompe proposed then15

to estimate the discrete entropy of the permutation vector16

sequence, which led to the so-called permutation entropy,17

and later on, to some variations of this measure [26–28].18

However, when dealing with sequences generated by a de-19

terministic process, such statistical measures can be inap-20

propriate because they measure an ensemble, or average,21

behavior.22

Conversely, for deterministic sequences generated by23

dynamical systems, there are a huge number of analysis24

tools, like Lyapunov exponents, and fractal dimensions,25

among others [29–31]. In general, the quantities under26

study are relatively difficult to evaluate, and they require27

long times of computation. As an example, there can be28

the need to reconstruct a phase-space trajectory using sev-29

eral estimations to determine the embedding dimension30

and the optimal delay, and then, in a second step, to es-31

timate some quantities from the reconstructed trajectory,32

such as the whole Lyapunov spectrum, or just some ex-33

ponents (e.g., positive, max), or dimensions [31,32]. More-34

over, these tools are generally designed specifically for the35

study of chaotic series. A more natural concept of ‘uncer-36

tainty’ of a time series, whether chaotic or not, is that37

of its complexity in the sense of Kolmogorov. Roughly38

speaking, this measures the minimal size of a binary pro-39

gram that can generate the sequence (i.e., the algorithmic40

complexity) [33,34]. Among these, there is the Lempel-41

Ziv complexity, which is based on simple recursive copy-42

paste operations, as will be seen later [35,36]. This kind43

of measure naturally finds applications in the compres-44

sion domain [33,36,37], and it is also used for signal anal-45

ysis [10,13,15,16]. A strength of this complexity is that46

as it deals with a random discrete-state and ergodic se-47

quence, and when it is correctly normalized, it converges48

to the entropy rate of the sequence [33,35]. In a sense, the49

Lempel-Ziv complexity contains the concept of complex-50

ity both in the deterministic sense (Kolmogorov) and in51

the statistical sense (Shannon). This property led to the52

use of the Lempel-Ziv complexity for entropy estimation53

purposes [21,38]. A possible drawback of the Lempel-Ziv54

complexity is that it is defined for sequences that take55

their values on a discrete (finite sized) alphabet. If it can56

find natural applications that deal with discrete-state se-57

quences, such as DNA sequences or sequences generated58

by logical circuits, while ‘real-life’ signals are generally59

continuous states1. Thus, to use the Lempel-Ziv complex- 60

ity for signal characterization purposes, there is first the 61

need to quantize the data, which introduces some param- 62

eters into the tuning. These parameters can influence the 63

behavior of the complexity of the quantized signal, as can 64

be seen, e.g., in reference [39], where for a logistic map, 65

some bifurcations are not (completely) captured by the 66

Lempel-Ziv complexity. 67

As can be imagined, there are many ways to overcome 68

the drawbacks of purely statistical methods or purely 69

deterministic approaches. Here, we concentrate on the 70

Lempel-Ziv complexity, using first the idea that under- 71

lies the Bandt-Pompe entropy, to ‘quantize’ a sequence to 72

analyze. 73

This report is organized as follows. In Section 2, we 74

first define the notation we use in the following sections. 75

Then we provide some basics on Bandt-Pompe entropy 76

(or permutation entropy). In the same section, we also 77

provide some basics on Lempel-Ziv complexity, proposing 78

then to ‘mix’ both of these approaches in Section 3, to 79

give what we call the Lempel-Ziv permutation complex- 80

ity. In this same section, we provide some properties of 81

the Lempel-Ziv permutation complexity, including in an 82

Appendix the technical details and the description of a 83

practical way to calculate this complexity when dealing 84

with scalar sequences. We then illustrate in Section 4 how 85

the Lempel-Ziv permutation complexity can be used for 86

data analysis of both simulated sequences and biological 87

signals, and we finish the paper by drawing up our con- 88

cluding remarks. 89

2 Notation and recall 90

2.1 Bandt-Pompe permutation entropy 91

The starting point of the Bandt-Pompe approach [25] ap- 92

pears to take its origin from a study of chaos, and more 93

specifically, through the famous Takens’ delay embedding 94

theorem [31,32]. The principle of this theorem is the re- 95

construction of the state trajectory of a dynamical system 96

from the observation of one of its states. To fix the ideas, 97

consider a real-valued discrete-time series {Xt}t≥0 that is 98

assumed to be a state of a multidimensional trajectory. 99

Consider two integers d ≥ 2 and τ ≥ 1, and from the se- 100

ries, let us then define a trajectory in the d-dimensional 101

space as: 102

Y
(d,τ)
t =

[
Xt−(d−1)τ . . . Xt−τXt

]t
, t ≥ (d− 1)τ

(1)
where the dimension d is known as the embedding dimen- 103

sion, and where τ is called the delay. Takens’ theorem 104

1 When performing the acquisition of a signal in a computer,
for example, the (discrete time) series is intrinsically a discrete-
state series due to the finite precision of the computer. How-
ever, this precision is generally high, so that the series can
be assumed to be a continuous-state series. In particular, in
general, the number of possible states is much higher that the
number of samples to be analyzed.
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gives conditions on d and τ such that Y
(d,τ)
t preserves1

the dynamical properties of the full dynamic system (e.g.,2

reconstruction of strange attractors) [31,32]. Many stud-3

ies have dealt with ‘optimal’ reconstruction of this phase4

space; i.e., the choice of the correct embedding dimension,5

and more particularly, the ‘optimal’ delay.6

In reference [25], Bandt and Pompe did not focus es-7

pecially on chaotic signals, even if these signals serve as8

illustrations. Thus, they did not focus on the phase-space9

reconstruction problem. More precisely, they did not pro-10

vide discussion on the parameters d and τ . The only in-11

gredient they wished to conserve was the idea of taking12

into account the dynamics of the system underlying an13

observed signal. These questions of optimal reconstruc-14

tion also go beyond the scope of our paper, so we do not15

discuss the choice of the embedding dimension and of the16

delay in the sequel anymore.17

Starting with the phase-space trajectory Y
(d,τ)
t , in-18

stead of focusing on the real-valued vectors, Bandt and19

Pompe were interested in the order of the components of20

the vectors. The principle consists first of the sorting (in21

ascending order) of the components of Y
(d,τ)
t , and then the22

replacement of each component Xt−kτ by its rank/ posi-23

tion in the sorted vector. This so-called permutation vector24

is denoted as Π
Y

(d,τ)
t

in the following. As an example, for25

a vector Y = [Y0 Y1 Y2]t such that Y2 ≤ Y0 ≤ Y1,26

the permutation vector is ΠY = [1 2 0]t. Dealing with27

random processes, it is then possible to define the permu-28

tation entropy as the Shannon entropy H of the (random)29

permutation vector30

Hπ
d,τ (Xt) ≡ H

(
Π

Y
(d,τ)
t

)
. (2)

For a stationary process, provided the size of the sequence31

is large enough in terms of d!, the entropy can be estimated32

via the frequencies of occurrence of any of the d! possi-33

ble permutation vectors in the sequence Y d,τ
t . In their34

paper, Bandt and Pompe defined the permutation en-35

tropy as the Shannon entropy of the frequencies of the36

permutation vectors2, which gives asymptotically the en-37

tropy Hπ
d,τ (Xt) of equation (2) when dealing with a long-38

time (infinite) stationary and ergodic process, as indicated39

in reference [25]. Starting from a sequence of length T,40

X0 . . .XT−1, in the sequel we write Ĥπ
d,τ (X0:T−1) for the41

entropy of the frequencies, to distinguish this from the42

entropy of the random process. Several quantifiers of in-43

formation based on Ĥπ
d,τ (X0:T−1) were proposed in refer-44

ence [25], although such extensions go beyond the purpose45

of the present paper. Thus, we do not present these here.46

The idea behind permutation entropy is that the d!47

possible permutation vectors, also called patterns, might48

not have the same probability of occurrence, and thus,49

2 More precisely, in their paper, the permutation vector is
defined as the time position of the component in the sorted
vector, instead of the vector of the rank of the vector compo-
nents. As there is a one-to-one mapping between the two ways
of making, the entropy of the two vectors is the same.

this probability might unveil knowledge about the under- 50

lying system. For a sequence of independent and iden- 51

tically distributed (iid) variables, whatever the distribu- 52

tion of the random variable, all of the patterns have the 53

same probability 1
d! of occuring (whatever the delay τ), 54

so that the permutation entropy is maximum and equal 55

to log(d!) [25]. Conversely, an important situation is rep- 56

resented by the so-called forbidden patterns, which are 57

patterns that do not appear at all in the analyzed time 58

series [40–42]. As an example, it was shown in the logis- 59

tic map Xt+1 = 4Xt(1 − Xt) that whatever the initial- 60

ization X0, for d = 3 and τ = 1, the permutation vec- 61

tor [2 1 0]t never appears. Such behavior shows how 62

the use of permutation vectors allows the distinguishing 63

between purely random sequences and deterministic se- 64

quences (e.g., when the last one is chaotic, and thus ap- 65

pears random): some authors have said that the presence 66

of forbidden patterns is an indicator of deterministic dy- 67

namics [40–42]. This question remains, however, contro- 68

versial, as it is possible to construct random series with 69

forbidden patterns [43], and conversely, a chaotic series 70

does not always show forbidden patterns [44]. 71

Note that if we work on a multidimensional sequence 72

{Xt}t≥0, the permutation procedure can be performed 73

on each vector Xt, so that there are no embedding pro- 74

cedures. To distinguish this situation from that of Bandt 75

and Pompe, we denote the permutation entropy and its 76

estimate as Hπ and Ĥπ, respectively, without mention of 77

any delay and embedding dimension. 78

2.2 Lempel-Ziv complexity 79

Consider a finite-size sequence S0:T−1 = S0 . . . ST−1 of 80

symbols that take their values in an alphabet A of fi- 81

nite size α = |A|. In 1965, Kolmogorov introduced the 82

concept of the complexity of such a sequence as the size 83

of the smallest binary program that can produce the se- 84

quence [33]. In an algorithmic sense, the Kolmogorov com- 85

plexity measures the minimal ‘information’ contained in 86

the sequence, or the minimal information needed to gener- 87

ate the sequence. Several years later, the seminal work of 88

Lempel and Ziv appeared [35], which dealt with the com- 89

plexity of the Kolmogorov type of a sequence, restricting 90

this concept to the ‘programs’ based only on two opera- 91

tions: recursive copy and paste operations. Their definition 92

lies in the two fundamental concepts of reproduction and 93

production: 94

– Reproduction: this consists of extending a se- 95

quence S0:T−1 of length T , adding a sequence Q0:N−1 96

via recursive copy-paste operations, which leads to 97

S0:T+N−1, i.e., the first letter Q0 is in S0:T−1, let us 98

say Q0 = Si, the second one is the following one in the 99

extended sequence of size T + 1, i.e., Q1 = Si+1, etc.: 100

Q0:N−1 is a subsequence of S0:T+N−2. In a sense, all of 101

the ‘information’ of the extended sequence S0:T+N−1 102

is in S0:T−1. 103

– Production: the extended sequence S0:T+N−1 is now 104

such that S0:T+N−2 can be reproduced by S0:T−1. 105
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The last symbol of the extension can also follow the1

recursive copy-paste operation, so that the production2

is a reproduction, but can be ‘new’. Note thus that a3

reproduction is a production, but the converse is false.4

Any sequence can be viewed as constructed through a suc-5

cession of productions, called a history. As an example, a6

sequence can be ‘produced’ symbol by symbol. However, a7

given sequence does not have a unique history; several pro-8

cesses of productions can lead to the same sequence. In the9

spirit of the Kolmogorov complexity, Lempel and Ziv were10

interested in the optimal history; i.e., the minimal produc-11

tions needed to generate a sequence: the so-called Lempel-12

Ziv complexity, denoted as C(S0:T−1) in the following, is13

this minimal number of production steps needed for the14

generation of S0:T−1. In a sense, C describes the ‘minimal’15

information needed to generate the sequence by recursive16

copy-paste operations. Thus, the approach of Lempel and17

Ziv, and of several variations [36,37], naturally gave rise to18

various algorithms of compression (including the famous19

‘gzip’). It can intuitively be understood that in a mini-20

mal sequence of production, all of the productions are not21

reproductions, otherwise it would be possible to reduce22

the number of steps [35]. This allowed the development23

of simple algorithms for the evaluation of the Lempel-Ziv24

complexity of a sequence [39].25

Surprisingly, although analyzing a sequence from a26

completely deterministic point of view, it appears that27

C(S0:T−1) sometimes also contains the concept of infor-28

mation in a statistical sense. Indeed, it was shown in ref-29

erences [33,35] that for a random stationary and ergodic30

process, when correctly normalized, the Lempel-Ziv com-31

plexity of the sequence tends to the entropy rate of the32

process; i.e.,33

lim
T→+∞

C (S0:T−1)
log(T )

T
= lim

T→+∞
H (S0:T−1)

T
(3)

where H(S0:T−1) is the joint entropy of the T symbols,34

and the righthand side is the entropy rate (entropy per35

symbol) of the process. Such a property gave rise to the36

use of the Lempel-Ziv complexity for entropy estimation37

purposes [21,38].38

Note that using the Lempel-Ziv complexity for analysis39

purposes might not be envisaged if the size of the sequence40

is not large enough in terms of the size of the alphabet.41

Indeed, for small sequences compared to the size of the42

alphabet, except for very elementary situations (e.g., con-43

stant signals, periodic signals), the complexity of the se-44

quence has a great probability of being close to the size of45

the sequence.46

3 The Lempel-Ziv permutation complexity47

As we have just seen, in a sense, the Lempel-Ziv complex-48

ity aims to capture a level of redundancy, or of regular-49

ity, in a sequence. Thus, this tool is interesting for the50

analysis of signals that appear to be random, but that51

hide some regularities, such as in chaotic sequences [39].52

Conversely, viewing this complexity as an estimator of the 53

Shannon entropy when dealing with random sequences, its 54

use is also relevant in such a context. In some sense, it pro- 55

vides a bridge between the two above-mentioned contexts. 56

However, a disadvantage of the Lempel-Ziv complexity is 57

that it is defined only for sequences of symbols taken in a 58

discrete (finite size) alphabet. Dealing with ‘real-life’ se- 59

quences, a quantization has to be performed before its 60

use, as has been done in many of the studies dealing with 61

data analysis via this complexity [10,15,16]. Quantizing a 62

signal might have some consequences in the evaluation of 63

the complexity, and the effects of the parameters of the 64

quantizers appear difficult to evaluate. 65

Conversely, the permutation entropy also has some 66

drawbacks due to its statistical aspects. To illustrate why 67

sometimes it cannot capture the dynamics of a sequence, 68

consider the example of an iid scalar noise, versus a peri- 69

odic scalar sequence of period T = 2. For an embedding 70

dimension d = 2 and a delay τ = 1, in both cases the per- 71

mutation vectors [0 1]t and [1 0]t appear with the same 72

frequency 1
2 (assuming the length of the sequence is large 73

enough). Thus, the permutation entropy is equal in both 74

cases, and in this example it is thus not sensitive enough 75

to discriminate between the random iid sequence and the 76

periodic sequence3. Several variants to avoid such a draw- 77

back can be imagined; e.g., taking into account the am- 78

plitudes when constructing the permutation vectors. The 79

weighted-permutation entropy proposed in reference [28] 80

shows its efficiency for the detection of abrupt changes in 81

a sequence, but in the example given above, it will not 82

be able to discriminate between the two situations. More- 83

over, when dealing with an intrinsic multidimensional se- 84

quence, the permutation vectors do not clearly reflect any 85

dynamics. 86

To avoid the possible disadvantages of both methods, 87

we propose here to mix the Bandt-Pompe and Lempel-Ziv 88

approaches; i.e., to analyze the sequence of permutation 89

vectors via the Lempel-Ziv complexity. In this way, it is 90

expected that we can take advantage of both methods, 91

and thus reduce their respective drawbacks. In the fol- 92

lowing, the so called Lempel-Ziv permutation complexity 93

of a finite length scalar sequence X0:T−1 or a finite length 94

multivariate sequence X0:T−1 are respectively denoted as: 95

96

Cπ
d,τ (X0:T−1) ≡ C

(
Π

Y
(d,τ)
(d−1)τ

. . . Π
Y

(d,τ)
T−1

)
(4)

where Y
(d,τ)
t = [Xt−(d−1)τ . . . Xt−τ Xt]t and Π

Y
(d,τ)
T−1

97

is its permutation vector, and 98

Cπ (X0:T−1) ≡ C
(
ΠX0 . . .ΠXT−1

)
. (5)

This way provides an answer to the necessity of working 99

with data taking the values on a finite size alphabet (here, 100

3 More rigorously, it is known that using the permutation en-
tropy for data analysis, several embedding dimensions have to
be tested. For d = 3 in this example, the permutation entropy
makes the distinction between the iid noise and the periodic
sequence.
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the alphabet is A ≡ {[π(0) . . . π(d − 1)]t : π ∈ Π(d)}1

of size α = d!, where Π(d) is the ensemble of the d! pos-2

sible permutations on {0, . . . , d − 1}). Moreover, viewing3

a permutation vector as quantization of the data, it is in-4

teresting to draw a parallel with dynamical quantization;5

namely, of the sigma-delta type [45]. Indeed, dealing with6

scalar real-state sequences, in the case where τ = 1 and7

d = 2, for instance, the permutation vector is [0 1]t if the8

signal increases locally, and is [1 0]t otherwise. In other9

words, the two possible permutation vectors quantize the10

variations of the signal in one bit. Roughly speaking, a11

sigma-delta quantizer acts in a similar way4. For d > 2,12

the same parallel should be made in some sense with the13

so-called multi-stage sigma-delta quantizers [46]. This par-14

allel is another motivation to use permutation vectors as a15

way to quantize a signal. Moreover, dealing with intrinsi-16

cally multivariate sequences, the permutation vectors can17

be viewed as (vector) quantization of the real-valued vec-18

tors; this scheme does not need tuning parameters, con-19

trary to standard vector quantization schemes [45].20

Working on the permutation vectors maintains the21

idea of studying the occurrences of patterns in a sequence.22

By analyzing the permutation vectors via the Lempel-Ziv23

complexity, a step is added because how the patterns are24

temporarily organized is analyzed, rather than the fre-25

quency of occurrences. To stress this, let us come back26

to the example of the permutation vector sequences of27

an iid noise versus a periodic sequence of period T = 2.28

As previously explained, the patterns [0 1]t and [1 0]t29

appear with the same frequency in both cases. However,30

the difference between the permutation vector sequences31

in the two cases is that in the first case, the two patterns32

appear in a random sequence, while in the second case,33

they appear periodically: in the first case, the Lempel-Ziv34

complexity is then high, while it is low (and equal to 3)35

in the second case. With this very elementary example,36

it can be seen why the Lempel-Ziv permutation complex-37

ity of a sequence can provide more information on the38

dynamics; i.e., by analyzing how the patterns are orga-39

nized temporarily, not only in terms of the frequency of40

occurrence.41

Moreover, dealing with intrinsically multivariate se-42

quences, the argument of capturing the dynamics that un-43

derlie the sequence fails, as there is no embedding prior44

to the quantization that is made with the construction of45

the permutation vector. At least this question is not clear.46

In essence, the Lempel-Ziv complexity will in a way cap-47

ture the dynamics of such a multivariate sequence, which48

strengthens the interest for mixing both the Bandt-Pompe49

and Lempel-Ziv approaches in this context.50

The Lempel-Ziv permutation complexity has some51

properties that have been inherited from the standard52

Lempel-Ziv complexity. The first is the link with the53

permutation entropy. Indeed, for a stationary ergodic54

process that is scalar or multivariate, the sequence of55

4 More rigorously, it quantizes the difference between a sam-
ple and a prediction of this sample (the ‘delta’ part) in one bit.
The prediction is made from all of the past samples, in general
performing an integration or a summation (the ‘sigma’ part).

permutations remains stationary and ergodic, so that 56

equation (3) applies to the Lempel-Ziv complexity and the 57

entropy rate of this sequence, which can be written as: 58

lim
T→∞

Cπ
d,τ (X0:T−1)

log T

T
= lim

T→∞
Hπ

d,τ (X0:T−1)
T

(6)

and 59

lim
T→∞

Cπ (X0:T−1)
log T

T
= lim

T→∞
Hπ (X0:T−1)

T
. (7)

The second property is the invariance of the Lempel-Ziv 60

permutation complexity to a given permutation applied 61

to the components of the vector of the initial series; i.e., 62

for any permutation matrix P , 63

Cπ (PX0 . . . PXT−1) = Cπ (X0 . . . XT−1). (8)

In other words, if a sequence of vectors Xt is constructed 64

from d scalar sequences, the choice of the order of the 65

components does not modify the value of the complex- 66

ity of the ‘joint’ sequence. This property arises because 67

ΠP Xt
= PΠXt

(permuting the components of a vector 68

results in permuting the components of its permutation 69

vector), together with the invariance of the Lempel-Ziv 70

complexity to a one-to-one transformation [17]. 71

As shown by reference [17] for the Lempel-Ziv com- 72

plexity, it is possible to build measures associated with the 73

Lempel-Ziv permutation complexity, although such possi- 74

ble extensions go beyond the scope of the present paper. 75

Before moving on to put the Lempel-Ziv permutation 76

complexity into action, let us just note the following ad- 77

ditional choices: 78

– To take into account a finite resolution in data acqui- 79

sition or to counteract possible low noise in the data, 80

we can introduce a radius of confidence δ; i.e., if the 81

absolute value of the difference of two components is 82

strictly lower than δ, then they are considered to be 83

equal. 84

– Performing the permutation procedure, when two com- 85

ponents of a vector are equal, we chose the ‘smallest’ 86

one as that with the lowest index (the oldest one in 87

the case of embedding). 88

(see Appendix for more details and further justification). 89

Once again, note that using the Lempel-Ziv permuta- 90

tion complexity for analysis purposes might not be feasible 91

if the size of the sequence is not large enough in terms of 92

the size of the alphabet d!. 93

4 Illustrations based on synthetic and real 94

data 95

4.1 Characterizing the logistic map 96

To illustrate how the Lempel-Ziv permutation complexity 97

can capture regularities in a signal, we consider here the 98

example of the famous logistic map 99

Xt+1 = k Xt (1−Xt), t ≥ 0, k ∈ (0; 4]. (9)
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We initialize X0 randomly in [0; 1] so that the sequence1

has a real value in the interval [0; 1]. This map has already2

been taken as an illustration by both Bandt and Pompe in3

reference [25], and Kaspar and Schuster in reference [39].4

The logistic map has been studied for a long time, and5

its behavior is well known and can be found in any text-6

book on chaos; e.g., [47,48]. Let us just recall that when k7

increases, it shows more and more complex regimes: there8

is an increasing sequence of values k−1 = 0 < k0 < . . . <9

k∞ ≈ 3.56995 such that, if k ∈ (kn−1; kn], the out-10

put asymptotically oscillates between 2n values, a phe-11

nomenon that is well known as bifurcations. For k ≥ k∞,12

the system is in a chaotic (unpredictable) regime. Roughly13

speaking, it appears to behave randomly, although it is14

produced by an elementary deterministic system. How-15

ever, in this zone, there remain some intervals, known as16

islands of stability, in which the behavior is nonchaotic.17

This briefly described behavior is summarized in the bi-18

furcation diagram plotted in Figure 1A.19

Let us now study the regimes of the logistic map20

versus k through the Lempel-Ziv permutation complex-21

ity proposed here. To this end, a sequence of size T =22

1000 is drawn and only the second half of the sequence,23

which is assumed to be in the permanent regime, is ana-24

lyzed. The behavior of Cπ
(d,τ) versus k is depicted in Fig-25

ure 1G, and this is compared to the permutation entropy26

(Figs. 1D−1F), to the Lempel-Ziv complexity performed27

on a static 2-level quantization of the signal �(.5;1](Xt),28

where � is the indicator function (Fig. 1C), and to the29

Lyapunov exponents (Fig. 1B). Roughly speaking, the30

Lyapunov exponent5 measures the exponential conver-31

gence or divergence of two trajectories for two close initial32

conditions: a positive Lyapunov exponent is a signature of33

chaos [47,48].34

The behavior of each descriptor can be interpreted as35

follows:36

– The Lyapunov exponent: this exponent clearly de-37

scribes the chaotic character of the logistic sequence38

(when it is positive) versus its non-chaotic character39

(when it is negative). However, as already mentioned40

in the literature, this is not precise enough to distin-41

guish different types of behavior in nonchaotic regimes.42

– The Lempel-Ziv complexity c({�(.5;1](Xt)}): as claimed43

by Kaspar and Schuster, this measure is more pre-44

cise than the Lyapunov exponent. In particular, the45

complexity is very high in chaotic regimes, while it46

is low in nonchaotic regimes. However, it can be seen47

that the bifurcations are not detected very well. This48

is clearly due to the quantization threshold. Indeed,49

for k < 3.237, the system asymptotically oscillates be-50

tween two values > 0.5, the threshold that was chosen51

by Kaspar and Schuster, which explains why the com-52

plexity fails to detect the bifurcations. The same phe-53

nomenon appears for the following bifurcations. Note54

5 For a discrete map of the type Xt+1 = f(Xt), this coeffi-

cient is given by λ = lim
T→∞

1
T

T∑

t=1

log f ′(Xt) [47,48]. Practically

speaking, this is calculated for a large T .

Fig. 1. Characterization of the logistic map versus k. (A) The
bifurcation diagram; i.e., the values taken by the series in the
permanent regime for each value of k. (B) The Lyapunov ex-
ponent λ. (C) The Lempel-Ziv complexity of the quantized
signal �(.5;1](Xt) as in reference [39]. (D–F) The permutation

entropy Ĥπ
(d,τ) with a delay τ = 1 when (d, δ) = (3, 0) (D),

(d, δ) = (5, 0) (E), and (d, δ) = (3, 10−3) (F). (G) The Lempel-
Ziv permutation complexity Cπ

(d,τ) for (d, τ, δ) = (3, 1, 10−3).

that choosing a threshold of 2/3 for this system leads 55

to the detection of the first bifurcation, but the other 56

bifurcations remain undetected. 57

– The permutation entropies Ĥπ
(d,1): in both cases of 58

d = 3 and d = 5, the permutation entropy precisely 59

characterizes the different regimes of the logistic map. 60

In particular, it is high in chaotic regions, while it is low 61

in nonchaotic regions; e.g., as is the case in the islands 62
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of stability. This is particularly true for the ‘high’ em-1

bedding dimension; e.g., d = 5. Note that for δ = 0, the2

first bifurcation is not detected here. This is due to the3

small oscillations that remain around the limit value4

when k ∈ (2; k0]. The consequence is that the per-5

mutation entropy fails to detect the first bifurcation,6

as the damped oscillatory behavior of the system for7

k ∈ (2; k0] is seen in the same manner as the sustained8

oscillations of the system when k ∈ (k0; k1]. Obviously,9

the permutation entropy (δ = 0) detects this oscilla-10

tory behavior which is inherent to the system. How-11

ever, if we are not really interested in the signal itself,12

but in its asymptotic regime, the small fluctuations can13

be viewed as perturbations. Choosing δ > 0 allows the14

‘filtering’ of these perturbations. In this case, even if15

the permutation entropy does not characterize the lo-16

gistic sequence itself, it very precisely characterizes the17

asymptotic regimes of the sequence, as can be seen in18

Figure 1. Indeed, in this case, the bifurcations are very19

well detected, even for ‘low’ embedding dimensions.20

– The Lempel-Ziv permutation complexity Cπ
(d,1): at a21

first glance, this measure behaves like the permutation22

entropy. In particular, the same effects of detection23

or not of the bifurcation occur if δ = 0 (not plotted24

in Fig. 1) or δ > 0. Note, however, that even in the25

low embedding dimension, the complexity appears to26

better characterize the constant, oscillatory or chaotic27

regimes. Indeed while Ĥπ
(3,1) is roughly constant when28

the chaos appears (for k slightly > k∞), the complexity29

greatly increases.30

4.2 Detecting of a sudden change31

in a three-dimensional signal32

To illustrate how the proposed measure can outperform33

the permutation entropy in assessing the degree of com-34

plexity of some signals, let us consider a multidimen-35

sional series Xt composed first of Nc points issued from36

a d-dimensional logistic series, followed by Nn points of37

both spatially and temporally iid noise. The d-dimensional38

logistic map we have chosen here for our purpose is de-39

scribed by the following equation:40

Xt+1 = k (K Xt + 1)�Xt � (1−Xt) (10)

where Xt is a d-dimensional vector, 1 = [1 . . . 1]t, K41

is a d × d coupling matrix, and � is the component-wise42

product (t ≥ 0). When K is zero, the d logistics are de-43

coupled. For the opposite, when K = 3P with P as the44

cyclic permutation matrix of one place to the left, or when45

K = 11t, the map corresponds to the models proposed by46

Lopez-Ruiz and Fournier-Prunaret in the 2-dimensional47

and 3-dimensional contexts to model symbiotic interac-48

tions between species, where parameter k represented the49

growth rate of the species [49,50]. In both the cases of50

d = 2 and d = 3, according to the value of k, these maps51

show regular orbits or chaotic orbits. We do not describe52

here the richness of these maps, but instead direct the53

reader to [49,50].54
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Fig. 2. Detection of a sudden change in a 3-dimensional
sequence composed of Nc = 2500 points of a coupled
3-dimensional logistic map given by equation (10) followed by
Nn = 2500 points of pure random noise (uniform). (A) A snap-
shot of the first component of such a sequence, with 2000 se-
quences then analyzed through a sliding window of Nw =
500 points, moving sample by sample. (B–D) Ten snapshots
of the permutation entropies (B), the Lempel-Ziv complexities
of a quantized version of the vectors (C), and Lempel-Ziv per-
mutation complexity (D) are shown. Right: the corresponding
histograms of the values taken by the measure, showing the
windows in the chaotic part (solid line) and in the noise part
(dashed line). The chaotic map is here strongly coupled, with
K = 3P and k = 1.01.
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Fig. 3. Same as for Figure 2 for a weakly coupled chaotic map,
with K = .01P and k = 3.96.

For our purposes, we have chosen to study what hap- 55

pens when the Nc first points of the sequence are gener- 56

ated by the 3-dimensional map (d = 3) showing chaotic 57

behavior. We considered two cases: in the first, the cou- 58

pling is K = 3P and k = 1.01; and in the second, 59

K = .01P and k = 3.96. In the first case, the compo- 60

nents are strongly coupled, while they are weakly coupled 61

in the second case. A snapshot of these logistic map se- 62

quences followed by pure noise is shown in Figures 2A 63

and 3A. Visually, it is relatively difficult to detect the 64

instant where the nature of the signal changes. Let us 65

then analyze the signal through sliding windows of size 66

Nw, moving point by point. In each window of the anal- 67

ysis (Xt−Nw+1, . . . , Xt), t = Nw − 1, . . ., we evaluate 68

the permutation entropy, the Lempel-Ziv complexity of 69

a quantized version of the components (by �[.5;+∞)), and 70

the Lempel-Ziv permutation complexity. The results ver- 71

sus t are plotted in Figures 2B–2D and 3B–3D, where 72

10 realizations are shown. On the right of Figures 2B–2D 73
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and 3B−3D, the corresponding histograms are shown6 for1

the values taken by each measure using 4×106 snapshots of2

the chaotic map (solid lines) and the noise (dashed lines).3

In these examples, the interpretations are the4

following:5

– The permutation entropy: this index cannot detect the6

change in the nature of the signal, as can be seen in7

the snapshots for both the strong and weak coupling8

(Figs. 2B and 3B). This is because, in these exam-9

ples, the patterns obtained in the permutation vectors10

performed on the components appear with similar fre-11

quencies to the chaotic regime and in the noise regime.12

By statistically analyzing these patterns, the dynamics13

underlying the data are lost. The difficulty in the dis-14

crimination between chaos and noise is also illustrated15

by the probabilities taken by the values of Hπ: roughly16

speaking, the probability of error in a discrimination17

task is a function of the surface shared by the two18

distributions.19

– The Lempel-Ziv complexity: when looking at the case20

of the strong coupling between the components of the21

logistic, the Lempel-Ziv complexity performed on the22

basic quantized version of the vector clearly discrim-23

inates between chaos and noise. However, when the24

components are weakly coupled, this is no more the25

case. This is clearly seen in the histograms that over-26

lap in the weak coupling case (Fig. 3C) while they are27

separated in the strong coupling situation (Fig. 2C).28

Our interpretation of this effect is that, in a sense, the29

Lempel-Ziv analyzes the components almost individu-30

ally: in the weak coupling case, it does not ‘see’ that31

the components follow exactly the same dynamics and32

are, in a sense, linked by these common dynamics.33

– The Lempel-Ziv permutation complexity: in both types34

of coupling, this measure unambiguously detects the35

change in the nature. This can be viewed both in36

the snapshots and in the probability distributions of37

the values taken by this measure (Figs. 2D and 3D).38

Clearly, there is no overlap between the two his-39

tograms, which confirms that there is no probability40

of error in the discrimination between the chaos and41

noise in this illustration. From the curves, it would ap-42

pear that for both cases, the Lempel-Ziv permutation43

entropy shows a weaker dispersion around its mean44

value than does the standard Lempel-Ziv complexity.45

These illustrations show that in spite of the power of the46

permutation entropy to discriminate between chaos and47

randomness, for instance, there are situations in which48

this tool fails in this task. Using the Lempel-Ziv complex-49

ity of a basic quantized version of the sequence can be50

an alternative, but this remains dependent on the quan-51

tification. Moreover, in this example, when there is no52

coupling or there is weak coupling between the compo-53

nents, the permutation vector takes into account that the54

6 In the case of the Lempel-Ziv complexities, as these values
can only take on discrete values between 2 and 500, their prob-
ability distributions are discrete. By misuse of representation,
we have plotted them as continuous distributions to make their
reading easier.
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Fig. 4. Electroencephalogram records of the analysis of a sec-
ondary generalized tonic-clonic epileptic seizure. The analysis
was performed with a sliding window of 10 s (1024 points)
moving sample by sample. (A) The original EEG. (B, C) The
Lempel-Ziv analysis was performed on a 2-level quantization
(B) and a 16-level quantization (C), and the quantizers were
uniform over the dynamics of the analyzed window. (D, E) For
both the permutation entropy (D) and the Lempel-Ziv permu-
tation complexity (E), the permutation vectors were evaluated
from a reconstructed phase-space trajectory with an embedded
dimension d = 4 and a delay τ = 1. The confidence radius was
chosen as zero. The vertical dotted lines denote the character-
istic times of T1, T2, T3 and T4.

components follow exactly the same dynamics, which is 55

what the standard Lempel-Ziv complexity appears not to 56

do. For these interpretations, basically, we believe that 57

dealing with an intrinsic multidimensional sequence, the 58

Lempel-Ziv permutation complexity should be preferred 59

to the permutation entropy and the standard Lempel-Ziv 60

complexity. 61

4.3 Epileptic electroencephalogram analysis 62

The electroencephalogram (EEG) signal analyzed in this 63

illustration corresponds to a scalp EEG record of a sec- 64

ondary generalized tonic-clonic epileptic seizure, recorded 65

from a central right location (C4) of the scalp. This EEG 66

record is one of the EEGs studied by Rosso et al. in refer- 67

ences [51–53]. It was obtained from a 39-year-old female 68

patient with a diagnosis of pharmaco-resistant epilepsy 69

(temporal lobe epilepsy), and no other accompanying dis- 70

orders. The EEG signal is shown in Figure 4A. The epile- 71

ptic seizure started at T1 = 80 s, with a discharge of slow 72

waves that are superposed by fast waves with a lower 73

amplitude. This discharge lasts beyond ΔT = 8 s, and 74

has a mean amplitude of 100 μV. During the tonic-clonic 75

epileptic seizure, there are very high amplitudes that con- 76

taminate the seizure recording, and the patient had to 77

be treated with an inhibitor of muscle responses. After 78
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a short period, a desynchronization phase, known as the1

epileptic recruiting rhythm, appears in a frequency band2

centered at about 10 Hz, and it rapidly increases in ampli-3

tude. After approximately 10 s, a progressive increase of4

the lower frequencies (0.5–3.5 Hz) was observed [54]. For5

the EEG studied here, this phase appears at T2 = 90 s.6

It is also possible to establish the beginning of the clonic7

phase, at around T3 = 125 s, and the end of the seizure at8

T4 = 155 s, where there is an abrupt decay of the signal9

amplitude.10

The recorded signal has a duration of 180 s, and the11

sampling frequency was 102.4 Hz (1024 samples/10 s) so12

that we dispose of 18 432 samples. To analyze the sig-13

nal, we again consider the methodology proposed in this14

paper; namely, the evaluation of the Lempel-Ziv permu-15

tation complexity. This result is compared to that given16

by the standard Lempel-Ziv performed on a static quan-17

tized version of the signal, and with the permutation en-18

tropy. The analysis was performed with sliding windows19

of size Nw = 1024 points (10 s), which moved sample20

by sample. Here, two quantized version are considered:21

a 2-level Q2 and a 16-level Q16, both of which are uni-22

form over the range of the signal in the window of analy-23

sis. For the permutation measures, the permutation vec-24

tors were constructed with an embedding dimension and25

a delay, of d = 4 and τ = 1, respectively. We chose here26

a radius of confidence of zero. The results are shown in27

Figures 4B−4E.28

The interpretations of these analyses are the following:29

– The Lempel-Ziv complexity: for both the 2-level and30

16-level quantization, this measure cannot detect any31

change in the analyzed series. Although not plotted32

here, we also tested 4-level and 8-level uniform quan-33

tizers, which leads to the same conclusion.34

– The permutation entropy: in this signal, the permuta-35

tion entropy detects the appearance of the epileptic36

seizure at T1 = 80 s, which is visible in the signal. The37

increase in the entropy measures a change in the na-38

ture of the signal; it is not just a change in amplitude,39

otherwise the nature of the sequence of the permuta-40

tion vectors would not have been changed, and nor41

would its entropy. Similarly, the characteristic times42

T2 = 90 s (not very visible in the signal), T3 = 125 s43

(the clonic phase) and T4 = 155 s (end of seizure) that44

are visible in the signal are also detected (as decreases45

and an increase in the permutation entropy, respec-46

tively). However, the characteristic time T3 is not well47

detected by the permutation entropy.48

– The Lempel-Ziv permutation complexity: it can be seen49

that the characteristic times detected by the per-50

mutation entropy are also clearly detected by the51

Lempel-Ziv permutation complexity. The shape of this52

complexity is very similar to that of the permutation53

entropy. In particular, the Lempel-Ziv permutation54

complexity detects a modification of the signal after55

the time T2 = 90 s, a change that is not particularly56

detectable visually: at the peak, the analyzed window57

is completely inside the ‘complex part’ of the crisis, but58

the decrease indicates that the signal becomes more59

and more organized. Finally, the Lempel-Ziv permuta- 60

tion complexity better detects the modification of the 61

signal after the time T3 = 125 s than the permutation 62

entropy. 63

Note that both the permutation entropy and the Lempel- 64

Ziv permutation complexity appear to indicate the ap- 65

pearance of an event at time 110 s, as seen by their in- 66

creases. We have no interpretation yet as to this possible 67

event. Finally, the abrupt change that was detected by the 68

standard Lempel-Ziv complexity at time 165 s is only a 69

consequence of the abrupt change in the dynamics. 70

We can see in this example that the measure of com- 71

plexity introduced in this paper increases steeply and very 72

precisely in time when the patient starts the seizure, and 73

even more, it can detect the different states of the tonic- 74

clonic epileptic seizure. Note also the high level of the 75

complexity at the end of the signal compared to that at 76

the beginning. This level indicates that the signal remains 77

‘disorganized’. A possible interpretation of such high com- 78

plexity is that even if the epileptic sequence is apparently 79

ended, complex activity remains consequent to the cri- 80

sis. A longer post-epilepsy sequence would be needed to 81

verify whether the complexity decreases to the low value 82

observed before the crisis. 83

As this signal serves essentially as an illustration, and 84

as our goal here is not to carry out deep EEG analyses, we 85

will not go further with this analysis. We also do not com- 86

pare our result here to those obtain in references [51–53], 87

which merits a study in itself. 88

5 Discussion 89

Data analysis has a long history and still gives rise to a 90

huge amount of research. Among the challenges, especially 91

for the analysis of natural signals such as biomedical sig- 92

nals, there is the need to characterize the degree of organi- 93

zation or the degree of complexity of signal sequences, the 94

problem of detecting sudden sequence changes that are not 95

detectable visually, and the problem of characterization of 96

the nature of specific changes in a sequence. The literature 97

on information theory on the one hand, and on dynami- 98

cal systems analysis on the other, provides an important 99

number of tools and methods to solve these challenges. 100

In this paper, we propose a tool that mixes two very 101

well known approaches: the permutation entropy and the 102

Lempel-Ziv complexity. The idea is to try to take the ad- 103

vantage of both of these approaches, the first of which is 104

statistical, and the second of which is deterministic. 105

The Lempel-Ziv complexity has long been known and 106

was initially introduced in the compression domain. How- 107

ever, it has been shown to be powerful for data analysis. 108

On the other hand, the permutation entropy allows a part 109

of the dynamics of a signal underlying data to be cap- 110

tured when it is performed on reconstructed phase-space 111

signals. Moreover, in some sense, it is based on a kind 112

of quantization of the data, by considering only the ten- 113

dencies rather than the values of the sequence. From this 114

last, it appears natural to quantize data, as has been done 115
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via the permutation vectors of a vector sequence (natu-1

ral or reconstructed) followed by the evaluation of the the2

complexity of such a quantized sequence. The association3

of these two approaches has here ‘given birth’ to what4

we have named the Lempel-Ziv permutation complexity,5

which is at the heart of our proposal.6

In this paper, in particular, we have shown how the7

Lempel-Ziv permutation complexity of a sequence can8

precisely capture the degree of organization of such se-9

ries. When dealing with scalar sequences, the Lempel-Ziv10

permutation complexity appears to give similar results to11

those of the permutation entropy, even if one measure is12

statistical while the other is purely deterministic. How-13

ever, when dealing with intrinsic multidimensional sig-14

nals, without procedures of phase-space reconstruction,15

the entropy performed on the permutation vectors built16

from the vector sequences cannot capture the dynamics17

that underlie the data. Indeed, the calculation of the fre-18

quency of occurrence of such permutation vectors is then a19

point-by-point analysis, and the links between successive20

points are lost. Conversely, as the Lempel-Ziv complex-21

ity aims to detect regularities in a sequence by analyzing22

how the symbols (numerical scalar samples, vectors, or23

any kind of symbol) can be predicted algorithmically from24

the past symbols, it captures the dynamics of the signal.25

Doing this analysis for the permutation vector sequences26

allows the natural solving of the question of quantization27

of the data, as by definition, the Lempel-Ziv complexity28

works with sequences of symbols lying on a discrete fi-29

nite size alphabet. As shown in our illustration, we can30

imagine many situations for which the Lempel-Ziv per-31

mutation complexity can capture a degree of organiza-32

tion, while the permutation entropy fails, especially when33

dealing with multidimensional signals; i.e., without phase-34

space (re)construction.35
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Appendix: Technical details39

Before detailing a possible practical implementation, we40

should point out that when two components of a vector41

are equal, an ambiguity remains when performing the per-42

mutation procedure. Such a situation appears with a prob-43

ability of zero for continuous state iid random sequences,44

but it can appear in constant or periodic sequences, for45

instance. To avoid such an ambiguity, Bandt and Pompe46

proposed to add a small perturbation to the values, which47

is equivalent to choosing randomly the ‘smallest’ value be-48

tween two equal values. For instance, in the example of a49

constant sequence, in this way, the permutation vectors50

reflect only the behavior of the perturbation, and thus51

both the permutation entropy and the Lempel-Ziv per-52

mutation complexity are of the noise and not of the signal53

under analysis. To overcome such a difficulty, we chose54

here to consider that the ‘smallest’ of two equal values as55

the ‘oldest’ one, as has also been done in the literature. 56

In the example of a constant signal, the sequence of per- 57

mutation vectors will be constant, which can then capture 58

the low complexity of the sequence. 59

Conversely, an observed sequence can be corrupted by 60

a low noise. This corrupting noise can hide the complexity 61

of the sequence when the permutation vectors are evalu- 62

ated. The example of a constant signal again illustrates 63

such an impact of the noise. To counteract perturbations, 64

a way to denoise or filter the observed sequence can consist 65

of choosing a value δ ≥ 0 so that for two components Y (i) 66

and Y (j) of a (phase-space) vector, if |Y (i) − Y (j)| ≤ δ 67

then Y (i) and Y (j) are interpreted as equal. In a sense, δ 68

is a radius of confidence in the measured data. If δ = 0, 69

this means that we have perfect confidence in the mea- 70

sured data, while for δ > 0 we take into account possible 71

perturbations in the measures. In other words, δ can be 72

chosen to be equal to the resolution of the acquisition. 73

Practically, to evaluated Cπ
d,τ (Xt), and to avoid two 74

passes through the sequence, this can be done recursively, 75

by alternating the calculation of the permutation vectors 76

and the up-dating of the complexity: 77

Step 0. Construction of the first d-dimensional vector 78

Y = Y
(d,τ)
t and evaluation of the first permu- 79

tation vector Πt = ΠY , t = 0; storage of this 80

permutation vector in a stack, and initialization 81

of the Lempel-Ziv algorithm (implicitly, the first 82

production step). 83

Step 1. t← t + 1: replacement of Y by the new vector of 84

the trajectory, evaluation of the new permutation 85

vector Πt to be stored in the stack. 86

Step 2. Up-dating of the Lempel-Ziv complexity using 87

this permutation vector, and go to step 1. 88

In the case where τ = 1, the evaluation of the permutation 89

vector Πt at time t can be simplified by using Πt−1. 90

Indeed, in the constructed trajectory vector Y , the first 91

point Xout = Y (0) disappears, the other d−1 components 92

are shifted, and the next point of the scalar sequence Xt 93

appears as the last component of Y . The permutation of 94

component i (previously i+1, i = 1, . . . , d−1) changes only 95

if either Xt ≥ Y (i) and Xout ≤ Y (i) (the rank decreases) 96

or Xt < Y (i) and Xout > Y (i) (the rank increases). This 97

up-dating of the rank can thus be made with d doublet of 98

comparisons (seeking also the rank of the new point Xt). 99

For the Lempel-Ziv complexity, when beginning a new 100

production step, the algorithm of [39] consists of testing all 101

of the letters of the already constructed history as possible 102

pointers of a production step, and retaining the letter that 103

gives the greatest production step: this pointer gives what 104

is then called an exhaustive production step. 105

The global recursive algorithm is described in detail 106

by the diagram flow shown in Figure A.1; in this simple 107

case, τ = 1. For τ > 1, the same scheme holds, except 108

that we have to first store the τ permutation vectors, then 109

store the τ vectors Y , let us say Y 0, . . . , Y τ−1, and use 110

both Y tmod τ and Rt−τ to recursively evaluate Πt. For a 111

non-zero radius of confidence, in the algorithm described 112

in Figure A.1, x > y (and respectively, x ≥ y) is then 113
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Xt+d−1 ≥ Y(i)

START

Πt(1) ← pin

Y(1) ← Xt

pin ← pin + 1

Xout > Y(i)

Πt(i) ← Πt(i) − 1Πt(i) ← Πt(i) + 1

we ← 1, c ← 1, l ← 1

yes

no

no

yes

no

yes

yes

yes

no

Lempel–Ziv complexity Bandt–Pompe permutation

Y ← [X0 · · · Xd−1]

Π0 ← Rank(Y ), t ← 0

km ← 1

no

yes

no

yes

yes

no

j ← j + 1

Πl+k = Πj+k

km ← k + 1

k + 1 > km

j = l

we ← 1

c ← c + 1

l ← l + km

l > T − d

STOP

l + k > t

k ← k + 1

k ← 0

k ← 0

j ← 0

we ← 0

we = 1

no

l > t

c ← c + 1

l + k > T − d

yes

no

yes

no

Xout ← Y(0)

Y(i) ← Y(i + 1)

yesno

i ← i + 1

no

yes

Xout ≤ Y(i)

pin ← 0

i ← 0

t ← t + 1

Πt(i) ← Πt−1(i + 1)

i = d − 1

Fig. A.1. Diagram flow of the algorithm evaluating the Lempel-Ziv permutation complexity Cπ
d,τ for a scalar sequence. In this

diagram, τ = 1 (see text for the extension to any τ ), and the size of the sequence is denoted as T . we marks when a word is
exhaustive or not, l is the beginning of an exhaustive word, j is the tested pointer, and km is the size of the current exhaustive
word [35,39].

replaced by x > y + δ (respectively, x ≥ y + δ) and x < y1

(respectively, x ≤ y) by x < y−δ (respectively, x ≤ y−δ).2

Note that there are various fast algorithms that rank3

a vector [55,56]. In general, these work by recursively par-4

titioning the points to be ranked in a partially ordered5

manner (through a tree), performing a brute-force sorting6

in the last partitions, and coming back to the overall en-7

semble. In general, the computational cost is in O(d log d),8

instead of O(d2) for a totally brute force method. Such 9

approaches should be used in our algorithm, using the 10

partitions at step t − 1 to determine that at step t, ex- 11

pecting a computational cost in O(log d) instead of d. 12

However, in practice, the Bandt-Pompe entropy (and here 13

the Lempel-Ziv permutation complexity) is studied in low 14

dimensions, so that the computational cost of a brute force 15

approach is relatively close to that of fast approaches. 16
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Thus, we will not go deeper into such possible improve-1

ments of the proposed algorithm.2

Finally, note that contrary to the permutation entropy,3

the Lempel-Ziv complexities can be evaluated online, i.e.,4

up-dated acquisition by acquisition.5
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22. T. Schürmann, J. Phys. A 36, L295 (2004)50

23. M. Rosenblatt, Ann. Math. Statist. 27, 832 (1956)51

24. E. Parzen, Ann. Math. Statist. 33, 1065 (1962)52

25. C. Bandt, B. Pompe, Phys. Rev. Lett. 88, 174102 (2002)53

26. K. Keller, M. Sinn, Physica A 356, 114 (2005)54

27. C. Bian, C. Qin, Q.D.Y. Ma, Q. Shen, Phys. Rev. E 85,55

021606 (2012)56

28. B. Fadlallah, B. Chen, A. Keil, J. Pŕıncipe, Phys. Rev. E57
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