65 research outputs found
Incorporating chemical signalling factors into cell-based models of growing epithelial tissues
In this paper we present a comprehensive computational framework within which the effects of chemical signalling factors on growing epithelial tissues can be studied. The method incorporates a vertex-based cell model, in conjunction with a solver for the governing chemical equations. The vertex model provides a natural mesh for the finite element method (FEM), with node movements determined by force laws. The arbitrary Lagrangian–Eulerian formulation is adopted to account for domain movement between iterations. The effects of cell proliferation and junctional rearrangements on the mesh are also examined. By implementing refinements of the mesh we show that the finite element (FE) approximation converges towards an accurate numerical solution. The potential utility of the system is demonstrated in the context of Decapentaplegic (Dpp), a morphogen which plays a crucial role in development of the Drosophila imaginal wing disc. Despite the presence of a Dpp gradient, growth is uniform across the wing disc. We make the growth rate of cells dependent on Dpp concentration and show that the number of proliferation events increases in regions of high concentration. This allows hypotheses regarding mechanisms of growth control to be rigorously tested. The method we describe may be adapted to a range of potential application areas, and to other cell-based models with designated node movements, to accurately probe the role of morphogens in epithelial tissues
A mechanism for morphogen-controlled domain growth
Many developmental systems are organised via the action of graded distributions of morphogens. In the Drosophila wing disc, for example, recent experimental evidence has shown that graded expression of the morphogen Dpp controls cell proliferation and hence disc growth. Our goal is to explore a simple model for regulation of wing growth via the Dpp gradient: we use a system of reaction-diffusion equations to model the dynamics of Dpp and its receptor Tkv, with advection arising as a result of the flow generated by cell proliferation. We analyse the model both numerically and analytically, showing that uniform domain growth across the disc produces an exponentially growing wing disc
From microscopic to macroscopic descriptions of cell\ud migration on growing domains
Cell migration and growth are essential components of the development of multicellular organisms. The role of various cues in directing cell migration is widespread, in particular, the role of signals in the environment in the control of cell motility and directional guidance. In many cases, especially in developmental biology, growth of the domain also plays a large role in the distribution of cells and, in some cases, cell or signal distribution may actually drive domain growth. There is a ubiquitous use of partial differential equations (PDEs) for modelling the time evolution of cellular density and environmental cues. In the last twenty years, a lot of attention has been devoted to connecting macroscopic PDEs with more detailed microscopic models of cellular motility, including models of directional sensing and signal transduction pathways. However, domain growth is largely omitted in the literature. In this paper, individual-based models describing cell movement and domain growth are studied, and correspondence with a macroscopic-level PDE describing the evolution of cell density is demonstrated. The individual-based models are formulated in terms of random walkers on a lattice. Domain growth provides an extra mathematical challenge by making the lattice size variable over time. A reaction-diffusion master equation formalism is generalised to the case of growing lattices and used in the derivation of the macroscopic PDEs
Aberrant behaviours of reaction diffusion self-organisation models on growing domains in the presence of gene expression time delays
Turing’s pattern formation mechanism exhibits sensitivity to the details of the initial conditions suggesting that, in isolation, it cannot robustly generate pattern within noisy biological environments. Nonetheless, secondary aspects of developmental self-organisation, such as a growing domain, have been shown to ameliorate this aberrant model behaviour. Furthermore, while in-situ hybridisation reveals the presence of gene expression in developmental processes, the influence of such dynamics on Turing’s model has received limited attention. Here, we novelly focus on the Gierer–Meinhardt reaction diffusion system considering delays due the time taken for gene expression, while incorporating a number of different domain growth profiles to further explore the influence and interplay of domain growth and gene expression on Turing’s mechanism. We find extensive pathological model behaviour, exhibiting one or more of the following: temporal oscillations with no spatial structure, a failure of the Turing instability and an extreme sensitivity to the initial conditions, the growth profile and the duration of gene expression. This deviant behaviour is even more severe than observed in previous studies of Schnakenberg kinetics on exponentially growing domains in the presence of gene expression (Gaffney and Monk in Bull. Math. Biol. 68:99–130, 2006). Our results emphasise that gene expression dynamics induce unrealistic behaviour in Turing’s model for multiple choices of kinetics and thus such aberrant modelling predictions are likely to be generic. They also highlight that domain growth can no longer ameliorate the excessive sensitivity of Turing’s mechanism in the presence of gene expression time delays. The above, extensive, pathologies suggest that, in the presence of gene expression, Turing’s mechanism would generally require a novel and extensive secondary mechanism to control reaction diffusion patterning
A Feed-Forward Circuit Linking Wingless, Fat-Dachsous Signaling, and the Warts-Hippo Pathway to Drosophila Wing Growth
The secreted morphogen Wingless promotes Drosophila wing growth by fueling a wave front of Fat-Dachsous signaling that recruits new cells into the wing primordium
Beyond the Symptom: The Biology of Fatigue
A workshop titled Beyond the Symptom: The Biology of Fatigue was held virtually September 27-28, 2021. It was jointly organized by the Sleep Research Society and the Neurobiology of Fatigue Working Group of the NIH Blueprint Neuroscience Research Program. For access to the presentations and video recordings, see: https://neuroscienceblueprint.nih.gov/about/event/beyond-symptom-biology-fatigue. The goals of this workshop were to bring together clinicians and scientists who use a variety of research approaches to understand fatigue in multiple conditions and to identify key gaps in our understanding of the biology of fatigue. This workshop summary distills key issues discussed in this workshop and provides a list of promising directions for future research on this topic. We do not attempt to provide a comprehensive review of the state of our understanding of fatigue, nor to provide a comprehensive reprise of the many excellent presentations. Rather, our goal is to highlight key advances and to focus on questions and future approaches to answering them
Zyxin Links Fat Signaling to the Hippo Pathway
Using genetic and molecular analyses, the authors identify Zyx as a positive regulator of Hippo signaling and characterize its role within the pathway
Control of Neural Daughter Cell Proliferation by Multi-level Notch/Su(H)/E(spl)-HLH Signaling
The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. We find that a Notch/Su(H)/E(spl)-HLH cascade specifically controls daughter, but not progenitor proliferation. Additionally, we find that different E(spl)-HLH genes are required in different neuroblast lineages. The Notch/Su(H)/E(spl)-HLH cascade alters daughter proliferation by regulating four key cell cycle factors: Cyclin E, String/Cdc25, E2f and Dacapo (mammalian p21CIP1/p27KIP1/p57Kip2). ChIP and DamID analysis of Su(H) and E(spl)-HLH indicates direct transcriptional regulation of the cell cycle genes, and of the Notch pathway itself. These results point to a multi-level signaling model and may help shed light on the dichotomous proliferative role of Notch signaling in many other systems
Overexposure to apoptosis via disrupted glial specification perturbs Drosophila macrophage function and reveals roles of the CNS during injury
Apoptotic cell clearance by phagocytes is a fundamental process during development, homeostasis and the resolution of inflammation. However, the demands placed on phagocytic cells such as macrophages by this process, and the limitations these interactions impose on subsequent cellular behaviours are not yet clear. Here, we seek to understand how apoptotic cells affect macrophage function in the context of a genetically tractable Drosophila model in which macrophages encounter excessive amounts of apoptotic cells. Loss of the glial-specific transcription factor Repo prevents glia from contributing to apoptotic cell clearance in the developing embryo. We show that this leads to the challenge of macrophages with large numbers of apoptotic cells in vivo. As a consequence, macrophages become highly vacuolated with cleared apoptotic cells, and their developmental dispersal and migration is perturbed. We also show that the requirement to deal with excess apoptosis caused by a loss of repo function leads to impaired inflammatory responses to injury. However, in contrast to migratory phenotypes, defects in wound responses cannot be rescued by preventing apoptosis from occurring within a repo mutant background. In investigating the underlying cause of these impaired inflammatory responses, we demonstrate that wound-induced calcium waves propagate into surrounding tissues, including neurons and glia of the ventral nerve cord, which exhibit striking calcium waves on wounding, revealing a previously unanticipated contribution of these cells during responses to injury. Taken together, these results demonstrate important insights into macrophage biology and how repo mutants can be used to study macrophage–apoptotic cell interactions in the fly embryo. Furthermore, this work shows how these multipurpose cells can be ‘overtasked’ to the detriment of their other functions, alongside providing new insights into which cells govern macrophage responses to injury in vivo
Drosophila TIEG Is a Modulator of Different Signalling Pathways Involved in Wing Patterning and Cell Proliferation
Acquisition of a final shape and size during organ development requires a
regulated program of growth and patterning controlled by a complex genetic
network of signalling molecules that must be coordinated to provide positional
information to each cell within the corresponding organ or tissue. The mechanism
by which all these signals are coordinated to yield a final response is not well
understood. Here, I have characterized the Drosophila ortholog
of the human TGF-β Inducible Early Gene 1 (dTIEG). TIEG are zinc-finger
proteins that belong to the Krüppel-like factor (KLF) family and were
initially identified in human osteoblasts and pancreatic tumor cells for the
ability to enhance TGF-β response. Using the developing wing of
Drosophila as “in vivo” model, the dTIEG
function has been studied in the control of cell proliferation and patterning.
These results show that dTIEG can modulate Dpp signalling. Furthermore, dTIEG
also regulates the activity of JAK/STAT pathway suggesting a conserved role of
TIEG proteins as positive regulators of TGF-β signalling and as mediators of
the crosstalk between signalling pathways acting in a same cellular context
- …