212 research outputs found

    Decentralized Overview

    Get PDF
    13 slide

    Ornithine Decarboxylase mRNA is Stabilized in an mTORC1-dependent Manner in Ras-transformed Cells

    Get PDF
    Upon Ras activation, ODC (ornithine decarboxylase) is markedly induced, and numerous studies suggest that ODC expression is controlled by Ras effector pathways. ODC is therefore a potential target in the treatment and prevention of Ras-driven tumours. In the present study we compared ODC mRNA translation profiles and stability in normal and Ras12V-transformed RIE-1 (rat intestinal epithelial) cells. While translation initiation of ODC increased modestly in Ras12V cells, ODC mRNA was stabilized 8-fold. Treatment with the specific mTORC1 [mTOR (mammalian target of rapamycin) complex 1] inhibitor rapamycin or siRNA (small interfering RNA) knockdown of mTOR destabilized the ODC mRNA, but rapamycin had only a minor effect on ODC translation initiation. Inhibition of mTORC1 also reduced the association of the mRNA-binding protein HuR with the ODC transcript. We have shown previously that HuR binding to the ODC 3ā€²UTR (untranslated region) results in significant stabilization of the ODC mRNA, which contains several AU-rich regions within its 3ā€²UTR that may act as regulatory sequences. Analysis of ODC 3ā€²UTR deletion constructs suggests that cis-acting elements between base 1969 and base 2141 of the ODC mRNA act to stabilize the ODC transcript. These experiments thus define a novel mechanism of ODC synthesis control. Regulation of ODC mRNA decay could be an important means of limiting polyamine accumulation and subsequent tumour development

    Stress biology:Complexity and multifariousness in health and disease

    Get PDF
    Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures. Sixty-one years after the discovery of the heat shock response by Ferruccio Ritossa, many aspects of stress biology are still enigmatic. Recent progress in the understanding of stress responses and molecular chaperones was reported at the 12th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment in the Old Town Alexandria, VA, USA from 28th to 31st of October 2023.</p

    Fractures in myelomeningocele

    Get PDF
    BACKGROUND: In patients with myelomeningocele (MMC), a high number of fractures occur in the paralyzed extremities, affecting mobility and independence. The aims of this retrospective cross-sectional study are to determine the frequency of fractures in our patient cohort and to identify trends and risk factors relevant for such fractures. MATERIALS AND METHODS: Between March 1988 and June 2005, 862 patients with MMC were treated at our hospital. The medical records, surgery reports, and X-rays from these patients were evaluated. RESULTS: During the study period, 11% of the patients (nĀ =Ā 92) suffered one or more fractures. Risk analysis showed that patients with MMC and thoracic-level paralysis had a sixfold higher risk of fracture compared with those with sacral-level paralysis. Femoral-neck z-scores measured by dual-energy X-ray absorptiometry (DEXA) differed significantly according to the level of neurological impairment, with lower z-scores in children with a higher level of lesion. Furthermore, the rate of epiphyseal separation increased noticeably after cast immobilization. Mainly patients who could walk relatively well were affected. CONCLUSIONS: Patients with thoracic-level paralysis represent a group with high fracture risk. According to these results, fracture and epiphyseal injury in patients with MMC should be treated by plaster immobilization. The duration of immobilization should be kept to a minimum (<4Ā weeks) because of increased risk of secondary fractures. Alternatively, patients with refractures can be treated by surgery, when nonoperative treatment has failed

    Disruption of Spectrin-Like Cytoskeleton in Differentiating Keratinocytes by PKCĪ“ Activation Is Associated with Phosphorylated Adducin

    Get PDF
    Spectrin is a central component of the cytoskeletal protein network in a variety of erythroid and non-erythroid cells. In keratinocytes, this protein has been shown to be pericytoplasmic and plasma membrane associated, but its characteristics and function have not been established in these cells. Here we demonstrate that spectrin increases dramatically in amount and is assembled into the cytoskeleton during differentiation in mouse and human keratinocytes. The spectrin-like cytoskeleton was predominantly organized in the granular and cornified layers of the epidermis and disrupted by actin filament inhibitors, but not by anti-mitotic drugs. When the cytoskeleton was disrupted PKCĪ“ was activated by phosphorylation on Thr505. Specific inhibition of PKCĪ“(Thr505) activation with rottlerin prevented disruption of the spectrin-like cytoskeleton and the associated morphological changes that accompany differentiation. Rottlerin also inhibited specific phosphorylation of the PKCĪ“ substrate adducin, a cytoskeletal protein. Furthermore, knock-down of endogenous adducin affected not only expression of adducin, but also spectrin and PKCĪ“, and severely disrupted organization of the spectrin-like cytoskeleton and cytoskeletal distribution of both adducin and PKCĪ“. These results demonstrate that organization of a spectrin-like cytoskeleton is associated with keratinocytes differentiation, and disruption of this cytoskeleton is mediated by either PKCĪ“(Thr505) phosphorylation associated with phosphorylated adducin or due to reduction of endogenous adducin, which normally connects and stabilizes the spectrin-actin complex
    • ā€¦
    corecore