479 research outputs found
Anharmonic vs. relaxational sound damping in glasses: I. Brillouin scattering from densified silica
This series discusses the origin of sound damping and dispersion in glasses.
In particular, we address the relative importance of anharmonicity versus
thermally activated relaxation. In this first article, Brillouin-scattering
measurements of permanently densified silica glass are presented. It is found
that in this case the results are compatible with a model in which damping and
dispersion are only produced by the anharmonic coupling of the sound waves with
thermally excited modes. The thermal relaxation time and the unrelaxed velocity
are estimated.Comment: 9 pages with 7 figures, added reference
Magnetic resonance imaging in osteoarthritis: which method best reflects synovial membrane inflammation? Correlations with clinical, macroscopic and microscopic features
SummaryObjectives: To study synovial membrane (SM) inflammation near the patella with different magnetic resonance imaging (MRI) approaches performed using a T1-injected sequence in knee osteoarthritis (OA), and to compare MRI results with macroscopic, microscopic and clinical findings.MethodsFifteen patients fulfilling American College of Rheumatology (ACR) criteria for knee OA and requiring joint lavage completed a functional index (Lequesne's functional index) and a pain visual analog scale (VAS). SM inflammation near the patella was assessed on axial fat saturation post-injected T1 MRI images using three different methods: (1) semi-quantitative score=MRI synovitis score; (2) synovial membrane volume (SMV) analysis; (3) SMV with low (SMVL) (<0.3%/s−1), intermediate (SMVI) (0.3%/s−1 to 1%/s−1) and high (SMVH) (≥1%/s−1) speed of enhancement. Chondral lesions and SM inflammation were macroscopically graded and SM biopsies performed for microscopic scoring.ResultsAll MRI approaches exhibited excellent intra- and inter-observer reproducibility. MRI synovitis score correlated well with macroscopic (r=0.61, P=0.003) and total microscopic scores (r=0.55, P=0.03). Correlations between SMV and macroscopic (r=0.60, P=0.02) and microscopic congestion (r=0.63, P=0.01) were good. SMVH was correlated only with microscopic congestion (r=0.79, P=0.01). Low SMV was associated with neither macroscopic nor microscopic scores. However, it did correlate well with pain-VAS score (r=0.61, P=0.03) and moderately with a functional index (r=0.46, P=0.10).ConclusionThe three MRI approaches used here provided highly reproducible information on SM inflammation near the patella in knee OA. Compared to SMV, MRI synovitis score seems sufficient to assess synovial inflammation but high SMV is an appropriate indicator of vascular congestion, and low SMV reflects pain in knee OA
Slider-Block Friction Model for Landslides: Application to Vaiont and La Clapiere Landslides
Accelerating displacements preceding some catastrophic landslides have been
found empirically to follow a time-to-failure power law, corresponding to a
finite-time singularity of the velocity [{\it Voight},
1988]. Here, we provide a physical basis for this phenomenological law based on
a slider-block model using a state and velocity dependent friction law
established in the laboratory and used to model earthquake friction. This
physical model accounts for and generalizes Voight's observation: depending on
the ratio of two parameters of the rate and state friction law and on the
initial frictional state of the sliding surfaces characterized by a reduced
parameter , four possible regimes are found. Two regimes can account for
an acceleration of the displacement. We use the slider-block friction model to
analyze quantitatively the displacement and velocity data preceding two
landslides, Vaiont and La Clapi\`ere. The Vaiont landslide was the catastrophic
culmination of an accelerated slope velocity. La Clapi\`ere landslide was
characterized by a peak of slope acceleration that followed decades of ongoing
accelerating displacements, succeeded by a restabilizing phase. Our inversion
of the slider-block model on these data sets shows good fits and suggest to
classify the Vaiont (respectively La Clapi\`ere) landslide as belonging to the
velocity weakening unstable (respectively strengthening stable) sliding regime.Comment: shortened by focusing of the frictional model, Latex document with
AGU style file of 14 pages + 11 figures (1 jpeg photo of figure 6 given
separately) + 1 tabl
ProTides of BVdU as potential anticancer agents upon efficient intracellular delivery of their activated metabolites
Nucleosides represent a major chemotherapeutic class for treating cancer, however their limitations in
terms of cellular uptake, nucleoside kinase-mediated activation and catabolism are well-documented.
The monophosphate pro-nucleotides known as ProTides represents a powerful strategy for bypassing
the dependence on active transport and nucleoside kinase-mediated activation. Herein, we report the
structural tuning of BVdU ProTides. Forty six phosphoramidates were prepared and biologically evaluated
against three different cancer cell lines; murine leukemia (L1210), human CD4 + T-lymphocyte (CEM) and
human cervical carcinoma (HeLa). Twenty-fold potency enhancement compared to BVdU was achieved
against L1210 cells. Interestingly, a number of ProTides showed low micromolar activity against CEM
and HeLa cells compared to the inactive parent BVdU. The ProTides showed poor, if any measurable toxicity
to non-tumourigenic human lung fibroblast cell cultures. Separation of four pairs of the diastereoisomeric
mixtures and comparison of their spectral properties, biological activities and enzymatic activation
rate is reported
The crossover from propagating to strongly scattered acoustic modes of glasses observed in densified silica
Spectroscopic results on low frequency excitations of densified silica are
presented and related to characteristic thermal properties of glasses. The end
of the longitudinal acoustic branch is marked by a rapid increase of the
Brillouin linewidth with the scattering vector. This rapid growth saturates at
a crossover frequency Omega_co which nearly coincides with the center of the
boson peak. The latter is clearly due to additional optic-like excitations
related to nearly rigid SiO_4 librations as indicated by hyper-Raman
scattering. Whether the onset of strong scattering is best described by
hybridization of acoustic modes with these librations, by their elastic
scattering (Rayleigh scattering) on the local excitations, or by soft
potentials remains to be settled.Comment: 14 pages, 6 figures, to be published in a special issue of J. Phys.
Condens. Matte
The nature of the short wavelength excitations in vitreous silica: X-Rays Brillouin scattering study
The dynamical structure factor (S(Q,E)) of vitreous silica has been measured
by Inelastic X-ray Scattering varying the exchanged wavevector (Q) at fixed
exchanged energy (E) - an experimental procedure that, contrary to the usual
one at constant Q, provides spectra with much better identified inelastic
features. This allows the first direct evidence of Brillouin peaks in the
S(Q,E) of SiO_2 at energies above the Boson Peak (BP) energy, a finding that
excludes the possibility that the BP marks the transition from propagating to
localised dynamics in glasses.Comment: 4 pages, 3 Postscript figures. To appear in Physical Review Letter
Interaction of quasilocal harmonic modes and boson peak in glasses
The direct proportionality relation between the boson peak maximum in
glasses, , and the Ioffe-Regel crossover frequency for phonons,
, is established. For several investigated materials . At the frequency the mean free path of the
phonons becomes equal to their wavelength because of strong resonant
scattering on quasilocal harmonic oscillators. Above this frequency phonons
cease to exist. We prove that the established correlation between
and holds in the general case and is a direct consequence of
bilinear coupling of quasilocal oscillators with the strain field.Comment: RevTex, 4 pages, 1 figur
Impaired decisional impulsivity in pathological videogamers
Abstract
Background
Pathological gaming is an emerging and poorly understood problem. Impulsivity is commonly impaired in disorders of behavioural and substance addiction, hence we sought to systematically investigate the different subtypes of decisional and motor impulsivity in a well-defined pathological gaming cohort.
Methods
Fifty-two pathological gaming subjects and age-, gender- and IQ-matched healthy volunteers were tested on decisional impulsivity (Information Sampling Task testing reflection impulsivity and delay discounting questionnaire testing impulsive choice), and motor impulsivity (Stop Signal Task testing motor response inhibition, and the premature responding task). We used stringent diagnostic criteria highlighting functional impairment.
Results
In the Information Sampling Task, pathological gaming participants sampled less evidence prior to making a decision and scored fewer points compared with healthy volunteers. Gaming severity was also negatively correlated with evidence gathered and positively correlated with sampling error and points acquired. In the delay discounting task, pathological gamers made more impulsive choices, preferring smaller immediate over larger delayed rewards. Pathological gamers made more premature responses related to comorbid nicotine use. Greater number of hours played also correlated with a Motivational Index. Greater frequency of role playing games was associated with impaired motor response inhibition and strategy games with faster Go reaction time.
Conclusions
We show that pathological gaming is associated with impaired decisional impulsivity with negative consequences in task performance. Decisional impulsivity may be a potential target in therapeutic management
Numerical study of anharmonic vibrational decay in amorphous and paracrystalline silicon
The anharmonic decay rates of atomic vibrations in amorphous silicon (a-Si)
and paracrystalline silicon (p-Si), containing small crystalline grains
embedded in a disordered matrix, are calculated using realistic structural
models. The models are 1000-atom four-coordinated networks relaxed to a local
minimum of the Stillinger-Weber interatomic potential. The vibrational decay
rates are calculated numerically by perturbation theory, taking into account
cubic anharmonicity as the perturbation. The vibrational lifetimes for a-Si are
found to be on picosecond time scales, in agreement with the previous
perturbative and classical molecular dynamics calculations on a 216-atom model.
The calculated decay rates for p-Si are similar to those of a-Si. No modes in
p-Si reside entirely on the crystalline cluster, decoupled from the amorphous
matrix. The localized modes with the largest (up to 59%) weight on the cluster
decay primarily to two diffusons. The numerical results are discussed in
relation to a recent suggestion by van der Voort et al. [Phys. Rev. B {\bf 62},
8072 (2000)] that long vibrational relaxation inferred experimentally may be
due to possible crystalline nanostructures in some types of a-Si.Comment: 9 two-column pages, 13 figure
- …