1,641 research outputs found

    High-density Skyrmion matter and Neutron Stars

    Full text link
    We examine neutron star properties based on a model of dense matter composed of B=1 skyrmions immersed in a mesonic mean field background. The model realizes spontaneous chiral symmetry breaking non-linearly and incorporates scale-breaking of QCD through a dilaton VEV that also affects the mean fields. Quartic self-interactions among the vector mesons are introduced on grounds of naturalness in the corresponding effective field theory. Within a plausible range of the quartic couplings, the model generates neutron star masses and radii that are consistent with a preponderance of observational constraints, including recent ones that point to the existence of relatively massive neutron stars with mass M 1.7 Msun and radius R (12-14) km. If the existence of neutron stars with such dimensions is confirmed, matter at supra-nuclear density is stiffer than extrapolations of most microscopic models suggest.Comment: 27 pages, 5 figures, AASTeX style; to be published in The Astrophysical Journa

    Magnetism of Two Coupled Harmonic Oscillators

    Full text link
    The thermodynamical properties of a system of two coupled harmonic oscillators in the presence of an uniform magnetic field B are investigated. Using an unitary transformation, we show that the system can be diagonalized in simple way and then obtain the energy spectrum solutions. These will be used to determine the thermodynamical potential in terms of different physical parameters like the coupling parameter \alpha. This allows us to give a generalization of already significant published work and obtain different results, those could be used to discuss the magnetism of the system. Different limiting cases, in terms of \alpha and B, have been discussed. In fact, quantum corrections to the Landau diamagnetism and orbital paramagnetism are found.Comment: 25 page

    Numerical Simulation of the Hydrodynamical Combustion to Strange Quark Matter

    Full text link
    We present results from a numerical solution to the burning of neutron matter inside a cold neutron star into stable (u,d,s) quark matter. Our method solves hydrodynamical flow equations in 1D with neutrino emission from weak equilibrating reactions, and strange quark diffusion across the burning front. We also include entropy change due to heat released in forming the stable quark phase. Our numerical results suggest burning front laminar speeds of 0.002-0.04 times the speed of light, much faster than previous estimates derived using only a reactive-diffusive description. Analytic solutions to hydrodynamical jump conditions with a temperature dependent equation of state agree very well with our numerical findings for fluid velocities. The most important effect of neutrino cooling is that the conversion front stalls at lower density (below approximately 2 times saturation density). In a 2-dimensional setting, such rapid speeds and neutrino cooling may allow for a flame wrinkle instability to develop, possibly leading to detonation.Comment: 5 pages, 3 figures (animations online at http://www.capca.ucalgary.ca/~bniebergal/webPHP/research.php

    Detection of Multiple Pathways in the Spinal Cord White Matter Using Q-Ball Imaging

    Get PDF
    International audienceHigh angular resolution MRI such as q-ball imaging (QBI) allows to recover complex white matter architecture. We applied this technique to an ex vivo spinal cord of one cat using a 3T scanner, 100 directions and b-values varying from 1000 to 3000 s/mm2. As a result, QBI can retrieve crossing fibre information, where the diffusion tensor imaging approach is constrained to a single diffusion direction. To our knowledge, this is the first study demonstrating the benefits of QBI in observing longitudinal, commissural and dorso-ventral fibres in the spinal cord. It is a first step towards in vivo characterization of the healthy and injured spinal cord using high angular resolution diffusion imaging (HARDI) and QBI

    Assessing indicators of runoff and erosion by rain simulation in the Ben Ahmed watershed (Central Morocco)

    Full text link
    The objective of this study was to investigate the risks of runoff and erosion of soils in the Ben Ahmed watershed, it's located in the region of casa-settat, 70 km south-east of Casablanca, and characterized by a semi-arid climate. The study consists of measuring on 1 m2 plot, the volumes of runoff and sediments, under the influence of rainfall generation (60mm/30 min). Soil samples were collected from each plot to determine texture, organic matter and humidity. Results obtained show that the detachability varies between 19 and 34 g/l, infiltrability oscillate between 15 and 37 mm.h-. Pearson correlation test shows that infiltration was negatively correlated with runoff and soil detachability (R=-0.99, R=-0.87 respectively). It‘s significantly correlated with the proportions of sand(R=0.69), silt (R= -0.98) an clay (R= 0.92), however, is weakly correlated with organic matter (R=-0.32). Infiltration and detachability were significantly correlated with humidity (R = -0.99, R = -0.63respectively)

    A Framework to Manage the Complex Organisation of Collaborating: Its Application to Autonomous Systems

    Full text link
    In this paper we present an analysis of the complexities of large group collaboration and its application to develop detailed requirements for collaboration schema for Autonomous Systems (AS). These requirements flow from our development of a framework for collaboration that provides a basis for designing, supporting and managing complex collaborative systems that can be applied and tested in various real world settings. We present the concepts of "collaborative flow" and "working as one" as descriptive expressions of what good collaborative teamwork can be in such scenarios. The paper considers the application of the framework within different scenarios and discuses the utility of the framework in modelling and supporting collaboration in complex organisational structures

    Determination of the cation site distribution of the spinel in multiferroic CoFe2O4 / BaTiO3 layers by X-ray photoelectron spectroscopy

    Get PDF
    International audienceThe properties of CoFe2O4/BaTiO3 artificial multiferroic multilayers strongly depend on the crystalline structure, the stoichiometry and the cation distribution between octahedral (Oh) and tetrahedral (Td) sites (inversion factor). In the present study, we have investigated epitaxial CoFe2O4 layers grown on BaTiO3, with different Co/Fe ratios. We determined the cation distribution in our samples by X-ray magnetic circular dichroism (XMCD), a well accepted method to do so, and by X-ray photoelectron spectroscopy (XPS), using a fitting method based on physical considerations. We observed that our XPS approach converged on results consistent with XMCD measurements made on the same samples. Thus, within a careful decomposition based on individual chemical environments it is shown that XPS is fully able to determine the actual inversion factor

    Higgs boson enhancement effects on squark-pair production at the LHC

    Full text link
    We study the Higgs boson effects on third-generation squark-pair production in proton-proton collision at the CERN Large Hadron Collider (LHC), including \Stop \Stop^*, \Stop\Sbot^*, and \Sbot \Sbot^*. We found that substantial enhancement can be obtained through s-channel exchanges of Higgs bosons at large tanβ\tan\beta, at which the enhancement mainly comes from bbˉb\bar b, bcˉb\bar c, and cbˉc\bar b initial states. We compute the complete set of electroweak (EW) contributions to all production channels. This completes previous computations in the literature. We found that the EW contributions can be significant and can reach up to 25% in more general scenarios and at the resonance of the heavy Higgs boson. The size of Higgs enhancement is comparable or even higher than the PDF uncertainties and so must be included in any reliable analysis. A full analytical computation of all the EW contributions is presented.Comment: 23 pages, 7 figures, 1 tabl

    Three-Dimensional Simulations of Jets from Keplerian Disks: Self--Regulatory Stability

    Full text link
    We present the extension of previous two-dimensional simulations of the time-dependent evolution of non-relativistic outflows from the surface of Keplerian accretion disks, to three dimensions. The accretion disk itself is taken to provide a set of fixed boundary conditions for the problem. The 3-D results are consistent with the theory of steady, axisymmetric, centrifugally driven disk winds up to the Alfv\'en surface of the outflow. Beyond the Alfv\'en surface however, the jet in 3-D becomes unstable to non-axisymmetric, Kelvin-Helmholtz instabilities. We show that jets maintain their long-term stability through a self-limiting process wherein the average Alfv\'enic Mach number within the jet is maintained to order unity. This is accomplished in at least two ways. First, poloidal magnetic field is concentrated along the central axis of the jet forming a ``backbone'' in which the Alfv\'en speed is sufficiently high to reduce the average jet Alfv\'enic Mach number to unity. Second, the onset of higher order Kelvin-Helmholtz ``flute'' modes (m \ge 2) reduce the efficiency with which the jet material is accelerated, and transfer kinetic energy of the outflow into the stretched, poloidal field lines of the distorted jet. This too has the effect of increasing the Alfv\'en speed, and thus reducing the Alfv\'enic Mach number. The jet is able to survive the onset of the more destructive m=1 mode in this way. Our simulations also show that jets can acquire corkscrew, or wobbling types of geometries in this relatively stable end-state, depending on the nature of the perturbations upon them. Finally, we suggest that jets go into alternating periods of low and high activity as the disappearance of unstable modes in the sub-Alfv\'enic regime enables another cycle of acceleration to super-Alfv\'enic speeds.Comment: 57 pages, 22 figures, submitted to Ap
    corecore