65 research outputs found

    Classical Scattering for a driven inverted Gaussian potential in terms of the chaotic invariant set

    Full text link
    We study the classical electron scattering from a driven inverted Gaussian potential, an open system, in terms of its chaotic invariant set. This chaotic invariant set is described by a ternary horseshoe construction on an appropriate Poincare surface of section. We find the development parameters that describe the hyperbolic component of the chaotic invariant set. In addition, we show that the hierarchical structure of the fractal set of singularities of the scattering functions is the same as the structure of the chaotic invariant set. Finally, we construct a symbolic encoding of the hierarchical structure of the set of singularities of the scattering functions and use concepts from the thermodynamical formalism to obtain one of the measures of chaos of the fractal set of singularities, the topological entropy.Comment: accepted in Phy. Rev.

    Self-pulsing effect in chaotic scattering

    Full text link
    We study the quantum and classical scattering of Hamiltonian systems whose chaotic saddle is described by binary or ternary horseshoes. We are interested in parameters of the system for which a stable island, associated with the inner fundamental periodic orbit of the system exists and is large, but chaos around this island is well developed. In this situation, in classical systems, decay from the interaction region is algebraic, while in quantum systems it is exponential due to tunneling. In both cases, the most surprising effect is a periodic response to an incoming wave packet. The period of this self-pulsing effect or scattering echoes coincides with the mean period, by which the scattering trajectories rotate around the stable orbit. This period of rotation is directly related to the development stage of the underlying horseshoe. Therefore the predicted echoes will provide experimental access to topological information. We numerically test these results in kicked one dimensional models and in open billiards.Comment: Submitted to New Journal of Physics. Two movies (not included) and full-resolution figures are available at http://www.cicc.unam.mx/~mejia

    The transcription factor STAT6 mediates direct repression of inflammatory enhancers and limits activation of alternatively polarized macrophages

    Get PDF
    The molecular basis of signal-dependent transcriptional activation has been extensively studied in macrophage polarization, but our understanding remains limited regarding the molecular determinants of repression. Here we show that IL-4-activated STAT6 transcription factor is required for the direct transcriptional repression of a large number of genes during in vitro and in vivo alternative macrophage polarization. Repression results in decreased lineage-determining transcription factor, p300, and RNA polymerase II binding followed by reduced enhancer RNA expression, H3K27 acetylation, and chromatin accessibility. The repressor function of STAT6 is HDAC3 dependent on a subset of IL-4-repressed genes. In addition, STAT6-repressed enhancers show extensive overlap with the NF-κB p65 cistrome and exhibit decreased responsiveness to lipopolysaccharide after IL-4 stimulus on a subset of genes. As a consequence, macrophages exhibit diminished inflammasome activation, decreased IL-1β production, and pyroptosis. Thus, the IL-4-STAT6 signaling pathway establishes an alternative polarization-specific epigenenomic signature resulting in dampened macrophage responsiveness to inflammatory stimuli

    Measuring Cosmic Rays with the RadMap Telescope on the International Space Station

    Get PDF
    The RadMap Telescope is a new radiation-monitoring instrument operating in the U.S. Orbital Segment (USOS) of the International Space Station (ISS). The instrument was commissioned in May 2023 and will rotate through four locations inside American, European, and Japanese modules over a period of about six months. In some locations, it will take data alongside operational, validated detectors for a cross-check of measurements. RadMap’s central detector is a finely segmented tracking calorimeter that records detailed depth-dose data relevant to studies of the radiation exposure of the ISS crew. It is also able to record particle-dependent energy spectra of cosmic-ray nuclei with energies up to several hundred MeV per nucleon. A unique feature of the detector is its ability to track nuclei with omnidirectional sensitivity at an angular resolution of two degrees. In this contribution, we present the design and capabilities of the RadMap Telescope and give an overview of the instrument’s commissioning on the ISS

    Neighborhood deprivation and biomarkers of health in Britain: The mediating role of the physical environment

    Get PDF
    Background: Neighborhood deprivation has been consistently linked to poor individual health outcomes; however, studies exploring the mechanisms involved in this association are scarce. The objective of this study was to investigate whether objective measures of the physical environment mediate the association between neighborhood socioeconomic deprivation and biomarkers of health in Britain. Methods: We linked individual-level biomarker data from Understanding Society: The UK Household Longitudinal Survey (2010-2012) to neighborhood-level data from different governmental sources. Our outcome variables were forced expiratory volume in 1 s (FEV1%; n=16,347), systolic blood pressure (SBP; n=16,846), body mass index (BMI; n=19,417), and levels of C-reactive protein (CRP; n=11,825). Our measure of neighborhood socioeconomic deprivation was the Carstairs index, and the neighborhood-level mediators were levels of air pollutants (sulphur dioxide [SO2], particulate matter [PM10], nitrogen dioxide [NO2], and carbon monoxide [CO]), green space, and proximity to waste and industrial facilities. We fitted a multilevel mediation model following a multilevel structural equation framework in MPlus v7.4, adjusting for age, gender, and income. Results: Residents of poor neighborhoods and those exposed to higher pollution and less green space had worse health outcomes. However, only SO2exposure significantly and partially mediated the association between neighborhood socioeconomic deprivation and SBP, BMI, and CRP. Conclusion: Reducing air pollution exposure and increasing access to green space may improve population health but may not decrease health inequalities in Britain

    Macrophage origin limits functional plasticity in helminth-bacterial co-infection

    Get PDF
    Rapid reprogramming of the macrophage activation phenotype is considered important in the defense against consecutive infection with diverse infectious agents. However, in the setting of persistent, chronic infection the functional importance of macrophage-intrinsic adaptation to changing environments vs. recruitment of new macrophages remains unclear. Here we show that resident peritoneal macrophages expanded by infection with the nematode Heligmosomoides polygyrus bakeri altered their activation phenotype in response to infection with Salmonella enterica ser. Typhimurium in vitro and in vivo. The nematode-expanded resident F4/80high macrophages efficiently upregulated bacterial induced effector molecules (e.g. MHC-II, NOS2) similarly to newly recruited monocyte-derived macrophages. Nonetheless, recruitment of blood monocyte-derived macrophages to Salmonella infection occurred with equal magnitude in co-infected animals and caused displacement of the nematode-expanded, tissue resident-derived macrophages from the peritoneal cavity. Global gene expression analysis revealed that although nematode-expanded resident F4/80high macrophages made an anti-bacterial response, this was muted as compared to newly recruited F4/80low macrophages. However, the F4/80high macrophages adopted unique functional characteristics that included enhanced neutrophil-stimulating chemokine production. Thus, our data provide important evidence that plastic adaptation of MΦ activation does occur in vivo, but that cellular plasticity is outweighed by functional capabilities specific to the tissue origin of the cell

    Surgically generated aerosol and mitigation strategies: combined use of irrigation, respirators and suction massively reduces particulate matter aerosol

    Get PDF
    Background Aerosol is a health risk to theatre staff. This laboratory study quantifies the reduction in particulate matter aerosol concentrations produced by electrocautery and drilling when using mitigation strategies such as irrigation, respirator filtration and suction in a lab environment to prepare for future work under live OR conditions. Methods We combined one aerosol-generating procedure (monopolar cutting or coagulating diathermy or high-speed diamond- or steel-tipped drilling of cadaveric porcine tissue) with one or multiple mitigation strategies (instrument irrigation, plume suction and filtration using an FFP3 respirator filter) and using an optical particle counter to measure particulate matter aerosol size and concentrations. Results Significant aerosol concentrations were observed during all aerosol-generating procedures with concentrations exceeding 3 × 106 particles per 100 ml. Considerable reductions in concentrations were observed with mitigation. In drilling, suction, FFP3 filtration and wash alone respectively reduced aerosol by 19.3–31.6%, 65.1–70.8% and 97.2 to > 99.9%. The greatest reduction (97.38 to > 99.9%) was observed when combining irrigation and filtration. Coagulating diathermy reduced concentrations by 88.0–96.6% relative to cutting, but produced larger particles. Suction alone, and suction with filtration reduced aerosol concentration by 41.0–49.6% and 88.9–97.4% respectively. No tested mitigation strategies returned aerosol concentrations to baseline. Conclusion Aerosol concentrations are significantly reduced through the combined use of filtration, suction and irrigation. Further research is required to characterise aerosol concentrations in the live OR and to find acceptable exposure limits, and in their absence, to find methods to further reduce exposure to theatre staff

    IL-4 as a Repurposed Biological Drug for Myocardial Infarction through Augmentation of Reparative Cardiac Macrophages: Proof-of-Concept Data in Mice.

    Get PDF
    Recent research has shown that reparative (alternatively activated or M2) macrophages play a role in repair of damaged tissues, including the infarcted hearts. Administration of IL-4 is known to augment M2 macrophages. This translational study thus aimed to investigate whether IL-4 administration is useful for the treatment of myocardial infarction. Long-acting IL-4 complex (IL-4c; recombinant IL-4 mixed with anti-IL-4 monoclonal antibody as a stabilizer) was administered after coronary artery ligation in mice. It was observed that IL-4c administration increased accumulation of CD206+F4/80+ M2-like macrophages predominantly in the injured myocardium, compared to the control. Sorted cardiac M2-like macrophages highly expressed wide-ranging tissue repair-related genes. Indeed, IL-4c administration enhanced cardiac function in association with reduced infarct size and enhanced tissue repair (strengthened connective tissue formation, improved microvascular formation and attenuated cardiomyocyte hypertrophy). Experiments using Trib1 -/- mice that had a depleted ability to develop M2 macrophages and other in-vitro studies supported that these IL-4-mediated effects were induced via M2-like macrophages. On the other hand, when administered at Day 28 post-MI, the effects of IL-4c were diminished, suggesting a time-frame for IL-4 treatment to be effective. These data represent proof-of-concept of efficacy of IL-4 treatment for acute myocardial infarction, encouraging its further development.This project was funded by the Heart Research UK Translational Research Grant (RG2653/15/16), British Heart Foundation Programme Grant (RG/15/31236), and Queen Mary Innovation Proof of Concept Grant (2015). The National Institute for Health Researchfunded Barts Cardiovascular Biomedical Research Unit also supported this project.This project was funded by the Heart Research UK Translational Research Grant (RG2653/15/16), British Heart Foundation Programme Grant (RG/15/31236), and Queen Mary Innovation Proof of Concept Grant (2015). The National Institute for Health Research-funded Barts Cardiovascular Biomedical Research Unit also supported this project

    IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1

    Get PDF
    Macrophages (M Phi s) colonize tissues during inflammation in two distinct ways: recruitment of monocyte precursors and proliferation of resident cells. We recently revealed a major role for IL-4 in the proliferative expansion of resident M Phi s during a Th2-biased tissue nematode infection. We now show that proliferation of M Phi s during intestinal as well as tissue nematode infection is restricted to sites of IL-4 production and requires M Phi-intrinsic IL-4R signaling. However, both IL-4R alpha-dependent and -independent mechanisms contributed to M Phi proliferation during nematode infections. IL-4R-independent proliferation was controlled by a rise in local CSF-1 levels, but IL-4R alpha expression conferred a competitive advantage with higher and more sustained proliferation and increased accumulation of IL-4R alpha(+) compared with IL-4R alpha(-) cells. Mechanistically, this occurred by conversion of IL-4R alpha(+) M Phi s from a CSF-1-dependent to -independent program of proliferation. Thus, IL-4 increases the relative density of tissue M Phi s by overcoming the constraints mediated by the availability of CSF-1. Finally, although both elevated CSF1R and IL-4R alpha signaling triggered proliferation above homeostatic levels, only CSF-1 led to the recruitment of monocytes and neutrophils. Thus, the IL-4 pathway of proliferation may have developed as an alternative to CSF-1 to increase resident M Phi numbers without coincident monocyte recruitment
    • …
    corecore