446 research outputs found
A new approach to engineering design
In the following paper, we present two components which have been used together to solve
engineering design problems. Firstly, we recall some results on Reduced-Basis Output Bound methods
which provide real-time outputs and their associated error estimators for a parametrized mathematical
model. Then, we propose an original architecture – called SimRes– for scientific computing which itself
comprises several components. Put together, these two components provide a complete solution for
certain classes of engineering design problems in terms of numerical methods and software
Advanced Control Strategy for Solar Combisystems
Solar combisystems are solar heating installations providing space heating as well as domestic hot water for the inhabitants of the building. The energy sources are solar energy as well as an auxiliary source, gas or oil typically. This paper describes the advanced control strategy that enables the energetic optimization of the building and the combisystem as a whole. This strategy also aims at maximizing the degree of comfort in terms of temperature variation. It has been implemented on a solar combisystem manufactured in Switzerland. The strategy chosen is a predictive control strategy. It computes one-day optimal profiles for the flow-rate in the collector loop and for the power to be dissipated in the building. To do so, the dynamical models of the combisystem and of the building have been derived. Weather forecasts are also required to implement this predictive control strategy. The weather forecasts are provided on-line by the Swiss Meteorological Institute (SMI). To make this strategy robust with respect to modeling errors and discrepancies between weather forecasts and actual weather, a convenient closed-loop implementation of the optimal profiles has been developed. In addition to applying the optimal profiles computed for the flow rate in the collector loop and the power dissipated in the building, the tracking of optimal temperature profiles is also implemented. The proposed strategy has led to significant improvements in terms of energy savings and comfort and has proven to be very robust. It has been successfully implemented on a pilot plant and its commercialization is being carried out at the moment
Interaction of paraffin wax gels with ethylene/vinyl acetate copolymers
The commercial grades of ethylene/vinyl acetate (EVA) co-polymers have found application as pour point" depressants in refined fuels. This study focuses on their behavior as additives to crude oils, where the intent is to reduce the yield stress of the gels that can form when the oil exits the reservoir. The model crude oils consisted of 4 wt % wax in decane. At EVA dosage levels of similar to200 ppm, the reduction in yield stress is 3 orders of magnitude for the C-36 wax, whereas the reduction is 1 order of magnitude for C-32 and only 3-fold for the C-28 wax. This decrease in efficiency with decreasing wax carbon number indicates that the EVA materials would not provide an adequate reduction in yield stress to ensure against gelation in pipeline transport. Neutron scattering studies, as a function of temperature, of the self-assembly of the EVA co-polymers show dramatically different aggregated structures in decane. The EVA with the lowest ethylene content shows scattering that increases with a power-law exponent of similar to1.6. This scattering behavior is typical for weakly aggregating polymer gels. In contrast, the EVA with the higher ethylene content shows a transition from surface scattering (found for strongly segregated objects) to a plateau whose height is dependent on temperature. Micrographs of the wax crystal morphology indicate that the ethylene-poor EVA alters the wax crystal habit at higher concentrations more effectively than does its higher-ethylene-content counterpart, whereas the latter EVA grade seems to form more wax crystals at low concentrations
Interaction of paraffin wax gels with random crystalline/amorphous hydrocarbon copolymers
The control mechanisms involved in the modification of wax crystal dimensions in crude oils and refined fuels are of joint scientific and practical interest. An understanding of these mechanisms allows strategies to be developed that lead to decreases in crude oil pour points or (for refined fuels) cold filter plugging points. The attainment of these goals involves the control and modification of wax crystals that spontaneously form in mixed hydrocarbon systems upon decreasing temperature. This work reports on the influence of random crystalline-amorphous block copolymers (ethylene-butene) upon the rheology of model oils. In a parallel fashion small-angle neutron scattering was exploited to gain microscopic insight as to how added poly(ethylene-butene) copolymers modify the wax crystal structures. The copolymers with different contents of polyethylene are highly selective with respect to wax crystal modification. Thus, the copolymer with the highest crystalline tendency is more efficient for the larger wax molecules while the less crystalline one is more efficient for the lower waxes
Deep-water macroalgae from the Canary Islands: new records and biogeographical relationships
Due to the geographical location and paleobiogeography of the Canary Islands, the
seaweed flora contains macroalgae with different distributional patterns. In this contribution, the biogeographical relations of several new records of deep-water macroalgae recently collected around the Canarian archipelago are discussed. These are Bryopsidella neglecta (Berthotd) Rietema,Discosporangium mesarthrocarpum (Meneghini) Hauck, Hincksia onslowensis (Amsler et Kapraun)P.C. Silva, Syringoderma floridana Henry, Peyssonnelia harveyana J. Agardh, Cryptonemia seminervis(C. Agardh) J. Agardh, Botryodadia wynnei Ballantine, Gloiocladia blomquistii (Searles) R. E.Norris, PIahchrysis peltata (W. R. Taylor) P. Huv4 et H. Huv4, Leptofauchea brasiliensis Joly, and Sarcodiotheca divaricata W. R. Taylor. These new records, especially those in the Florideophyceae,support the strong affinity of the Canary Islands seaweed flora with the warm-temperate Mediterranean-Atlantic region. Some species are recorded for the first time from the east coast of the Atlantic Ocean, enhancing the biogeographic relations of the Canarian marine flora with that of the western Atlantic regions
Frequency Dependent Rheology of Vesicular Rhyolite
Frequency dependent rheology of magmas may result from the presence of inclusions (bubbles, crystals) in the melt and/or from viscoelastic behavior of the melt itself. With the addition of deformable inclusions to a melt possessing viscoelastic properties one might expect changes in the relaxation spectrum of the shear stresses of the material (e.g., broadening of the relaxation spectrum) resulting from the viscously deformable geometry of the second phase. We have begun to investigate the effect of bubbles on the frequency dependent rheology of rhyolite melt. The present study deals with the rheology of bubble-free and vesicular rhyolite melts containing spherical voids of 10 and 30 vol %. We used a sinusoidal torsion deformation device. Vesicular rhyolite melts were generated by the melting (at 1 bar) of an Armenian obsidian (Dry Fountain, Erevan, Armenia) and Little Glass Mountain obsidian (California). The real and imaginary parts of shear viscosity and shear modulus have been determined in a frequency range of 0.005–10 Hz and temperature range of 600°–900°C. The relaxed shear viscosities of samples obtained at low frequencies and high temperatures compare well with data previously obtained by parallel plate viscometry. The relaxed shear viscosity of vesicular rhyolites decreases progressively with increasing bubble content. The relaxation spectrum for rhyolite melt without bubbles has an asymmetric form and fits an extended exponent relaxation. The presence of deformable bubbles results in an imaginary component of the shear modulus that becomes more symmetrical and extends into the low-frequency/high-temperature range. The internal friction Q −1 is unaffected in the high-frequency/low-temperature range by the presence of bubbles and depends on the bubble content in the high-temperature/low-frequency range. The present work, in combination with the previous study of Stein and Spera (1992), illustrates that magma viscosity can either increase or decrease with bubble content, depending upon the rate of style of strain during magmatic flow
Reduced-basis output bound methods for heat transfer problems
We describe a technique for the rapid and reliable prediction of outputs of interest, of elliptic partial differential
equations with affine parameter dependence. To achieve efficiency, the reduced-basis method is used; reliability is obtained
by the development of relevant a posteriori error estimators. We apply this method to the problem of designing a thermal
fin, to effectively remove heat from a surface. A number of design parameters=inputs are considered. Each possible
configuration, corresponding to different choices of the design parameters, needs to be evaluated by solving the heat
conduction equation and calculating certain outputs of interest like the average temperature on the fin base
Automated derivation of the adjoint of high-level transient finite element programs
In this paper we demonstrate a new technique for deriving discrete adjoint
and tangent linear models of finite element models. The technique is
significantly more efficient and automatic than standard algorithmic
differentiation techniques. The approach relies on a high-level symbolic
representation of the forward problem. In contrast to developing a model
directly in Fortran or C++, high-level systems allow the developer to express
the variational problems to be solved in near-mathematical notation. As such,
these systems have a key advantage: since the mathematical structure of the
problem is preserved, they are more amenable to automated analysis and
manipulation. The framework introduced here is implemented in a freely
available software package named dolfin-adjoint, based on the FEniCS Project.
Our approach to automated adjoint derivation relies on run-time annotation of
the temporal structure of the model, and employs the FEniCS finite element form
compiler to automatically generate the low-level code for the derived models.
The approach requires only trivial changes to a large class of forward models,
including complicated time-dependent nonlinear models. The adjoint model
automatically employs optimal checkpointing schemes to mitigate storage
requirements for nonlinear models, without any user management or intervention.
Furthermore, both the tangent linear and adjoint models naturally work in
parallel, without any need to differentiate through calls to MPI or to parse
OpenMP directives. The generality, applicability and efficiency of the approach
are demonstrated with examples from a wide range of scientific applications
Recommended from our members
Supramolecular polymer assembly in aqueous solution arising from cyclodextrin host-guest complexation
The employment of cyclodextrin host, guest complexation to construct supramolecular assemblies with an emphasis on polymer networks is reviewed. The main driving force for this supramolecular assembly is host, guest complexation between cyclodextrin hosts and guest groups either of which may be discrete molecular species or substituents on a polymer backbone. The effects of such complexation on properties at the molecular and macroscopic levels are discussed. It is shown that cyclodextrin complexation may be used to design functional polymer materials with tailorable properties, especially for photo-, pH-, thermo- and redoxresponsiveness and self-healing.Jie Wang, Zhiqiang Qiu, Yiming Wang, Li Li, Xuhong Guo, Duc-Truc Pham, Stephen F. Lincoln, and Robert K. Prud, homm
- …