310 research outputs found
Hybrid apparatus for Bose-Einstein condensation and cavity quantum electrodynamics: Single atom detection in quantum degenerate gases
We present and characterize an experimental system in which we achieve the
integration of an ultrahigh finesse optical cavity with a Bose-Einstein
condensate (BEC). The conceptually novel design of the apparatus for the
production of BECs features nested vacuum chambers and an in-vacuo magnetic
transport configuration. It grants large scale spatial access to the BEC for
samples and probes via a modular and exchangeable "science platform". We are
able to produce \87Rb condensates of five million atoms and to output couple
continuous atom lasers. The cavity is mounted on the science platform on top of
a vibration isolation system. The optical cavity works in the strong coupling
regime of cavity quantum electrodynamics and serves as a quantum optical
detector for single atoms. This system enables us to study atom optics on a
single particle level and to further develop the field of quantum atom optics.
We describe the technological modules and the operation of the combined BEC
cavity apparatus. Its performance is characterized by single atom detection
measurements for thermal and quantum degenerate atomic beams. The atom laser
provides a fast and controllable supply of atoms coupling with the cavity mode
and allows for an efficient study of atom field interactions in the strong
coupling regime. Moreover, the high detection efficiency for quantum degenerate
atoms distinguishes the cavity as a sensitive and weakly invasive probe for
cold atomic clouds
A compact and efficient strontium oven for laser-cooling experiments
Here we describe a compact and efficient strontium oven well suited for
laser-cooling experiments. Novel design solutions allowed us to produce a
collimated strontium atomic beam with a flux of 1.0\times10^13 s^-1 cm^-2 at
the oven temperature of 450 {\deg}C, reached with an electrical power
consumption of 36 W. The oven is based on a stainless-steel reservoir, filled
with 6 g of metallic strontium, electrically heated in a vacuum environment by
a tantalum wire threaded through an alumina multi-bore tube. The oven can be
hosted in a standard DN40CF cube and has an estimated continuous operation
lifetime of 10 years. This oven can be used for other alkali and alkaline earth
metals with essentially no modifications.Comment: 6 pages, 6 figures, Review of Scientific Instruments, in pres
Recommended from our members
Magnetic Switch for Integrated Atom Optics
A magnetic waveguide structure allows switching of neutral atoms between two guides. The switch consists of lithographically patterned current-carrying wires on a sapphire substrate. By selectively sending current through a particular set of wires, we select the desired output port of an incoming beam. We utilize two different magnetic-guiding schemes to adiabatically manipulate the atom trajectory
A waveguide atom beamsplitter for laser-cooled neutral atoms
A laser-cooled neutral-atom beam from a low-velocity intense source is split
into two beams while guided by a magnetic-field potential. We generate our
multimode-beamsplitter potential with two current-carrying wires on a glass
substrate combined with an external transverse bias field. The atoms bend
around several curves over a -cm distance. A maximum integrated flux of
is achieved with a current density of
in the 100- diameter
wires. The initial beam can be split into two beams with a 50/50 splitting
ratio
Ultra-cold atoms in an optical cavity: two-mode laser locking to the cavity avoiding radiation pressure
The combination of ultra-cold atomic clouds with the light fields of optical
cavities provides a powerful model system for the development of new types of
laser cooling and for studying cooperative phenomena. These experiments
critically depend on the precise tuning of an incident pump laser with respect
to a cavity resonance. Here, we present a simple and reliable experimental
tuning scheme based on a two-mode laser spectrometer. The scheme uses a first
laser for probing higher-order transversal modes of the cavity having an
intensity minimum near the cavity's optical axis, where the atoms are confined
by a magnetic trap. In this way the cavity resonance is observed without
exposing the atoms to unwanted radiation pressure. A second laser, which is
phase-locked to the first one and tuned close to a fundamental cavity mode
drives the coherent atom-field dynamics.Comment: 7 pages, 7 figure
Collective oscillations of an interacting trapped Fermi gas
We calculate the effects of two-body interactions on the low frequency
oscillations of a normal Fermi gas confined in a harmonic trap. The mean field
contribution to the collective frequencies is evaluated in the collisionless
regime using a sum rule approach. We also discuss the transition between the
collisionless and hydrodynamic regime with special emphasis to the spin dipole
mode in which two atomic clouds occupying different spin states oscillate in
opposite phase. The spin dipole mode is predicted to be overdamped in the
hydrodynamic regime. The relaxation time is calculated as a function of
temperature and the effects of Fermi statistics are explicitly pointed out.Comment: 4 pages, 1 figure include
AEGIS at CERN: Measuring Antihydrogen Fall
The main goal of the AEGIS experiment at the CERN Antiproton Decelerator is
the test of fundamental laws such as the Weak Equivalence Principle (WEP) and
CPT symmetry. In the first phase of AEGIS, a beam of antihydrogen will be
formed whose fall in the gravitational field is measured in a Moire'
deflectometer; this will constitute the first test of the WEP with antimatter.Comment: Presented at the Fifth Meeting on CPT and Lorentz Symmetry,
Bloomington, Indiana, June 28-July 2, 201
Ecotoxicity of hallachrome, an unusual 1-2 anthraquinone excreted by the infaunal polychaete Halla parthenopeia: evidence for a chemical defence?
Polychaetes play a prominent role in marine systems, but little is known about their secondary metabolites compared with other benthic taxa. In the present study, we investigated the toxicity of hallachrome, an unusual 1-2 anthraquinone identified from the skin of some polychaetes, including the Mediterranean infaunal species Halla parthenopeia. Under stress conditions, this worm releases a harmful purple mucus, whose noxious compounds were still unknown. We hypothesized that hallachrome also occurs in the purple mucus, giving rise to its color and toxicity. Soon after the production of the purple exudate, H. parthenopeia also secretes a harmless, transparent mucus, which pushes away the toxic one, suggesting protective functions for the worm itself. LC-MS and H-1-NMR analyses confirmed the presence of the pigment hallachrome in the purple mucus. The average concentration of the pigment in the purple mucus was about 310 mg L-1. Ecotoxicological bioassays on representative species of bacteria, protozoans, rotifers, crustaceans (Artemia franciscana) and polychaetes (Dinophilus gyrociliatus) revealed its severe toxic effects: LC50/EC(50)values ranged from 0.11-5.67 mg L-1. Hallachrome showed higher toxicity for A. franciscana than other naturally occurring anthraquinones. Tests on encapsulated embryos of D. gyrociliatus evidenced the ability of a mucus layer to limit hallachrome diffusion, confirming the protective role of the transparent mucus. Given the information available on polychaetes anti-predator strategies, hallachrome cannot be considered a consumer deterrent. However its toxicity and wide range of activity suggest chemical defensive functions against potential competitors, parasites and/or pathogens
Collisionless collective modes of fermions in magnetic traps
We present a Random-Phase-Approximation formalism for the collective spectrum
of two hyperfine species of dilute 40K atoms, magnetically trapped at zero
temperature and subjected to a repulsive s-wave interaction between atoms with
different spin projections. We examine the density-like and the spin-like
oscillation spectra, as well as the transition density profiles created by
external multipolar fields. The zero sound spectrum is always fragmented and
the density and spin channels become clearly distinguishable if the trapping
potentials acting on the species are identical. Although this distinction is
lost when these confining fields are different, at selected excitation
frequencies the transition densities may display the signature of the channel.Comment: 10 pages, 9 figure
Prospects for measuring the gravitational free-fall of antihydrogen with emulsion detectors
The main goal of the AEgIS experiment at CERN is to test the weak equivalence
principle for antimatter. AEgIS will measure the free-fall of an antihydrogen
beam traversing a moir\'e deflectometer. The goal is to determine the
gravitational acceleration g for antihydrogen with an initial relative accuracy
of 1% by using an emulsion detector combined with a silicon micro-strip
detector to measure the time of flight. Nuclear emulsions can measure the
annihilation vertex of antihydrogen atoms with a precision of about 1 - 2
microns r.m.s. We present here results for emulsion detectors operated in
vacuum using low energy antiprotons from the CERN antiproton decelerator. We
compare with Monte Carlo simulations, and discuss the impact on the AEgIS
project.Comment: 20 pages, 16 figures, 3 table
- …
