954 research outputs found

    Rovibrational optical cooling of a molecular beam

    Full text link
    Cooling the rotation and the vibration of molecules by broadband light sources was possible for trapped molecular ions or ultracold molecules. Because of a low power spectral density, the cooling timescale has never fell below than a few milliseconds. Here we report on rotational and vibrational cooling of a supersonic beam of barium monofluoride molecules in less than 440 μ\mus. Vibrational cooling was optimized by enhancing the spectral power density of a semiconductor light source at the underlying molecular transitions allowing us to transfer all the populations of v=13v''=1-3 into the vibrational ground state (v=0v''=0). Rotational cooling, that requires an efficient vibrational pumping, was then achieved. According to a Boltzmann fit, the rotation temperature was reduced by almost a factor of 10. In this fashion, the population of the lowest rotational levels increased by more than one order of magnitude

    On the steady state correlation functions of open interacting systems

    Full text link
    We address the existence of steady state Green-Keldysh correlation functions of interacting fermions in mesoscopic systems for both the partitioning and partition-free scenarios. Under some spectral assumptions on the non-interacting model and for sufficiently small interaction strength, we show that the system evolves to a NESS which does not depend on the profile of the time-dependent coupling strength/bias. For the partitioned setting we also show that the steady state is independent of the initial state of the inner sample. Closed formulae for the NESS two-point correlation functions (Green-Keldysh functions), in the form of a convergent expansion, are derived. In the partitioning approach, we show that the 0th order term in the interaction strength of the charge current leads to the Landauer-Buettiker formula, while the 1st order correction contains the mean-field (Hartree-Fock) results

    A compact design for the Josephson mixer: the lumped element circuit

    Full text link
    We present a compact and efficient design in terms of gain, bandwidth and dynamical range for the Josephson mixer, the superconducting circuit performing three-wave mixing at microwave frequencies. In an all lumped-element based circuit with galvanically coupled ports, we demonstrate non degenerate amplification for microwave signals over a bandwidth up to 50 MHz for a power gain of 20 dB. The quantum efficiency of the mixer is shown to be about 70%\% and its saturation power reaches 112-112 dBm.Comment: 5 pages, 4 figure

    Description of nuclear systems with a self-consistent configuration-mixing approach. I: Theory, algorithm, and application to the 12^{12}C test nucleus

    Full text link
    Although self-consistent multi-configuration methods have been used for decades to address the description of atomic and molecular many-body systems, only a few trials have been made in the context of nuclear structure. This work aims at the development of such an approach to describe in a unified way various types of correlations in nuclei, in a self-consistent manner where the mean-field is improved as correlations are introduced. The goal is to reconcile the usually set apart Shell-Model and Self-Consistent Mean-Field methods. This approach is referred as "variational multiparticle-multihole configuration mixing method". It is based on a double variational principle which yields a set of two coupled equations that determine at the same time the expansion coefficients of the many-body wave function and the single particle states. The formalism is derived and discussed in a general context, starting from a three-body Hamiltonian. Links to existing many-body techniques such as the formalism of Green's functions are established. First applications are done using the two-body D1S Gogny effective force. The numerical procedure is tested on the 12^{12}C nucleus in order to study the convergence features of the algorithm in different contexts. Ground state properties as well as single-particle quantities are analyzed, and the description of the first 2+2^+ state is examined. This study allows to validate our numerical algorithm and leads to encouraging results. In order to test the method further, we will realize in the second article of this series, a systematic description of more nuclei and observables obtained by applying the newly-developed numerical procedure with the same Gogny force. As raised in the present work, applications of the variational multiparticle-multihole configuration mixing method will however ultimately require the use of an extended and more constrained Gogny force.Comment: 22 pages, 18 figures, accepted for publication in Phys. Rev. C. v2: minor corrections and references adde

    Non-equilibrium steady-states for interacting open systems: exact results

    Full text link
    Under certain conditions we prove the existence of a steady-state transport regime for interacting mesoscopic systems coupled to reservoirs (leads). The partitioning and partition-free scenarios are treated on an equal footing. Our time-dependent scattering approach is {\it exact} and proves, among other things the independence of the steady-state quantities from the initial state of the sample. Closed formulas for the steady-state current amenable for perturbative calculations w.r.t. the interaction strength are also derived. In the partitioning case we calculate the first order correction and recover the mean-field (Hartree-Fock) results.Comment: To appear in Phys. Rev.

    Atom-molecule collisions in an optically trapped gas

    Full text link
    Cold inelastic collisions between confined cesium (Cs) atoms and Cs_2\_2 molecules are investigated inside a CO_2\_2 laser dipole trap. Inelastic atom-molecule collisions can be observed and measured with a rate coefficient of 2.5×1011\sim 2.5 \times 10^{-11} cm3^3 s1^{-1}, mainly independent of the molecular ro-vibrational state populated. Lifetimes of purely atomic and molecular samples are essentially limited by rest gas collisions. The pure molecular trap lifetime ranges 0,3-1 s, four times smaller than the atomic one, as is also observed in a pure magnetic trap. We give an estimation of the inelastic molecule-molecule collision rate to be 1011\sim 10^{-11} cm3^{3} s1^{-1}

    Optimized production of large Bose Einstein Condensates

    Full text link
    We suggest different simple schemes to efficiently load and evaporate a ''dimple'' crossed dipolar trap. The collisional processes between atoms which are trapped in a reservoir load in a non adiabatic way the dimple. The reservoir trap can be provided either by a dark SPOT Magneto Optical Trap, the (aberrated) laser beam itself or by a quadrupolar or quadratic magnetic trap. Optimal parameters for the dimple are derived from thermodynamical equations and from loading time, including possible inelastic and Majorana losses. We suggest to load at relatively high temperature a tight optical trap. Simple evaporative cooling equations, taking into account gravity, the possible occurrence of hydrodynamical regime, Feshbach resonance processes and three body recombination events are given. To have an efficient evaporation the elastic collisional rate (in s1^{-1}) is found to be on the order of the trapping frequency and lower than one hundred times the temperature in micro-Kelvin. Bose Einstein condensates with more than 10710^7 atoms should be obtained in much less than one second starting from an usual MOT setup.Comment: 14 page

    A note on the Landauer principle in quantum statistical mechanics

    Full text link
    The Landauer principle asserts that the energy cost of erasure of one bit of information by the action of a thermal reservoir in equilibrium at temperature T is never less than kTlog2kTlog 2. We discuss Landauer's principle for quantum statistical models describing a finite level quantum system S coupled to an infinitely extended thermal reservoir R. Using Araki's perturbation theory of KMS states and the Avron-Elgart adiabatic theorem we prove, under a natural ergodicity assumption on the joint system S+R, that Landauer's bound saturates for adiabatically switched interactions. The recent work of Reeb and Wolf on the subject is discussed and compared

    Generic strong coupling behavior of Cooper pairs in the surface of superfluid nuclei

    Get PDF
    With realistic HFB calculations, using the D1S Gogny force, we reveal a generic behavior of concentration of small sized Cooper pairs (2-3 fm) in the surface of superfluid nuclei. This study confirms and extends previous results given in the literature that use more schematic approaches.Comment: 5 pages, 5 figure

    Full counting statistics and phase diagram of a dissipative Rydberg gas

    Full text link
    Ultra-cold gases excited to strongly interacting Rydberg states are a promising system for quantum simulations of many-body systems. For off-resonant excitation of such systems in the dissipative regime, highly correlated many-body states exhibiting, among other characteristics, intermittency and multi-modal counting distributions are expected to be created. So far, experiments with Rydberg atoms have been carried out in the resonant, non-dissipative regime. Here we realize a dissipative gas of rubidium Rydberg atoms and measure its full counting statistics for both resonant and off-resonant excitation. We find strongly bimodal counting distributions in the off-resonant regime that are compatible with intermittency due to the coexistence of dynamical phases. Moreover, we measure the phase diagram of the system and find good agreement with recent theoretical predictions. Our results pave the way towards detailed studies of many-body effects in Rydberg gases.Comment: 12 pages, 5 figure
    corecore