998 research outputs found

    Constraining the QCD phase diagram by tricritical lines at imaginary chemical potential

    Full text link
    We present unambiguous evidence from lattice simulations of QCD with three degenerate quark species for two tricritical points in the (T,m) phase diagram at fixed imaginary \mu/T=i\pi/3 mod 2\pi/3, one in the light and one in the heavy mass regime. These represent the boundaries of the chiral and deconfinement critical lines continued to imaginary chemical potential, respectively. It is demonstrated that the shape of the deconfinement critical line for real chemical potentials is dictated by tricritical scaling and implies the weakening of the deconfinement transition with real chemical potential. The generalization to non-degenerate and light quark masses is discussed.Comment: 4 pages, 5 figure

    The RHMC algorithm for theories with unknown spectral bounds

    Get PDF
    The Rational Hybrid Monte Carlo (RHMC) algorithm extends the Hybrid Monte Carlo algorithm for lattice QCD simulations to situations involving fractional powers of the determinant of the quadratic Dirac operator. This avoids the updating increment (dtdt) dependence of observables which plagues the Hybrid Molecular-dynamics (HMD) method. The RHMC algorithm uses rational approximations to fractional powers of the quadratic Dirac operator. Such approximations are only available when positive upper and lower bounds to the operator's spectrum are known. We apply the RHMC algorithm to simulations of 2 theories for which a positive lower spectral bound is unknown: lattice QCD with staggered quarks at finite isospin chemical potential and lattice QCD with massless staggered quarks and chiral 4-fermion interactions (χ\chiQCD). A choice of lower bound is made in each case, and the properties of the RHMC simulations these define are studied. Justification of our choices of lower bounds is made by comparing measurements with those from HMD simulations, and by comparing different choices of lower bounds.Comment: Latex(Revtex 4) 25 pages, 8 postscript figure

    Speech Codes Theory

    Get PDF
    Rooted in the ethnography of communication and based on empirical research, speech codes theory is a theoretical/methodological tool for studying situated communication practices. Two important applications of speech codes theory are to reveal local cultures and to examine the ways in which people make use of communication to accomplish important goals pertaining to communal life. Speech codes theory offers researchers a systematic approach to describing, interpreting, analyzing, and comparing local communicative practices and the cultures which they instantiate

    Evidence for O(2) universality at the finite temperature transition for lattice QCD with 2 flavours of massless staggered quarks

    Full text link
    We simulate lattice QCD with 2 flavours of massless quarks on lattices of temporal extent N_t=8, to study the finite temperature transition from hadronic matter to a quark-gluon plasma. A modified action which incorporates an irrelevant chiral 4-fermion interaction is used, which allows simulations at zero quark mass. We obtain excellent fits of the chiral condensates to the magnetizations of a 3-dimensional O(2) spin model on lattices small enough to model the finite size effects. This gives predictions for correlation lengths and chiral susceptibilities from the corresponding spin-model quantities. These are in good agreement with our measurements over the relevant range of parameters. Binder cumulants are measured, but the errors are too large to draw definite conclusions. From the properties of the O(2) spin model on the relatively small lattices with which we fit our `data', we can see why earlier attempts to fit staggered lattice data to leading-order infinite-volume scaling functions, as well as finite size scaling studies, failed and led to erroneous conclusions.Comment: 27 pages, Latex with 10 postscript figures. Some of the discussions have been expanded to satisfy a referee. Typographical errors were correcte

    Overlap Dirac operator at nonzero chemical potential and random matrix theory

    Get PDF
    We show how to introduce a quark chemical potential in the overlap Dirac operator. The resulting operator satisfies a Ginsparg-Wilson relation and has exact zero modes. It is no longer gamma_5-hermitian, but its nonreal eigenvalues still occur in pairs. We compute the spectral density of the operator on the lattice and show that, for small eigenvalues, the data agree with analytical predictions of nonhermitian chiral random matrix theory for both trivial and nontrivial topology.Comment: 4 pages, 2 figure

    Use of recurrence quantification analysis to examine associations between changes in text structure across an expressive writing intervention and reductions in distress symptoms in women wth breast cancer

    No full text
    The current study presents an exploratory analysis of using Recurrence Quantification Analysis (RQA) to analyze text data from an Expressive Writing Intervention (EWI) for Danish women treated for Breast Cancer. The analyses are based on the analysis of essays from a subsample with the average age 54.6 years (SD = 9.0), who completed questionnaires for cancer-related distress (IES) and depression symptoms (BDI-SF). The results show a significant association between an increase in recurrent patterns of text structure from first to last writing session and a decrease in cancer-related distress at 3 months post-intervention. Furthermore, the change in structure from first to last essay displayed a moderate, but significant correlation with change in cancer-related distress from baseline to 9 months post-intervention. The results suggest that changes in recurrence patterns of text structure might be an indicator of cognitive restructuring that leads to amelioration of cancer-specific distress

    String Breaking in Non-Abelian Gauge Theories with Fundamental Matter Fields

    Get PDF
    We present clear numerical evidence for string breaking in three-dimensional SU(2) gauge theory with fundamental bosonic matter through a mixing analysis between Wilson loops and meson operators representing bound states of a static source and a dynamical scalar. The breaking scale is calculated in the continuum limit. In units of the lightest glueball we find rbmG13.6r_{\rm b} m_G\approx13.6. The implications of our results for QCD are discussed.Comment: 4 pages, 2 figures; equations (4)-(6) corrected, numerical results and conclusions unchange

    The finite temperature real time \hbar^2 corrections in quantum mechanics

    Full text link
    We study non-perturbative real time correlation functions at finite temperature. In order to see whether the classical term gives a good approximation in the high temperature limit T >> \hbar\omega, we consider the first \hbar^2 quantum corrections. We find that for the simplest non-trivial case, the quantum mechanical anharmonic oscillator, the classical result is reliable only for moderately large times: after some time t_* the classical approximation breaks down even at high temperatures. Moreover, the result for the first quantum corrections cannot, in general, be reproduced by modifying the parameters of the classical theory.Comment: 28 pages, 7 figure

    Phase Structure in a Hadronic Chiral Model

    Full text link
    We study the phase diagram of a hadronic chiral flavor-SU(3) model. Heavy baryon resonances can induce a phase structure that matches current results from lattice-QCD calculations at finite temperature and baryon density. Furthermore, we determine trajectories of constant entropy per net baryon in the phase diagram.Comment: 4 pages, 5 figure
    corecore