137 research outputs found

    State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology.

    Get PDF
    Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing

    Sugar Versatility—Chemical and Bioprocessing of Many Phytobiomass Polysaccharides Using a Milder Hydrolytic Catalyst: Diluted Thermopressurized Phosphoric Acid

    Get PDF
    Phytobiomasses, given the qualitative and quantitative dominance of polysaccharides, are a dominant wealth available in nature. Cellulose and hemicelluloses from softwoods, hardwoods and grasses, starch from tubercles and roots, pectins from fruits and gums from some seeds may be explored as such or following acid or alkaline pretreatments as well enzymatic deconstruction, and even simple chemical derivatization toward more added-value products. A general view in the chemistry of these valuable polymers is here broached, following a sharper focus on acid pretreatments for L(h)C—ligno(hemi)cellulosic materials from sugarcane and other feedstocks. Our particular experience using a gentler proton donor but keeping very advantageous aspects for polysaccharide chemo/biotechnological processing—thermopressurized diluted phosphoric acid (oPA)—is presented with a more detailed description as a result of its validity for the hydrolytic deconstruction of hemicelluloses—heteroxylans and heteromannans, cassava starch, dahlia inulin and mixed glucans from microalgae cell walls. The opportunity of NOs—nutraceutical oligosacchrides—generation from these particular glycopolymers is also shortly commented

    Finding Folk: Contemporary Craft Regionalism

    Get PDF
    This thesis considers place and belonging and explores craft as a method of discovering community. I recently moved my furniture practice from Toronto to Prince Edward County, an agricultural region in rural Ontario. This relocation inspired my research; Prince Edward County was the setting of this work and the community in which I attempted to form connections through my practice. The principles of architectural theory Critical Regionalism were applied as a framework for the design of new regional furniture. The concept of becoming through making is explored throughout this research and refers to both a maker’s acquisition of embodied and material knowledge, and to becoming part of a community. The paper documents the process of developing a body of work informed by Critical Regionalism, taking the form of wooden seats, and an engagement with community members through various craft-based projects, ranging from bending a metal basket to knitting furniture

    Rapid Behavioral and Genomic Responses to Social Opportunity

    Get PDF
    From primates to bees, social status regulates reproduction. In the cichlid fish Astatotilapia (Haplochromis) burtoni, subordinate males have reduced fertility and must become dominant to reproduce. This increase in sexual capacity is orchestrated by neurons in the preoptic area, which enlarge in response to dominance and increase expression of gonadotropin-releasing hormone 1 (GnRH1), a peptide critical for reproduction. Using a novel behavioral paradigm, we show for the first time that subordinate males can become dominant within minutes of an opportunity to do so, displaying dramatic changes in body coloration and behavior. We also found that social opportunity induced expression of the immediate-early gene egr-1 in the anterior preoptic area, peaking in regions with high densities of GnRH1 neurons, and not in brain regions that express the related peptides GnRH2 and GnRH3. This genomic response did not occur in stable subordinate or stable dominant males even though stable dominants, like ascending males, displayed dominance behaviors. Moreover, egr-1 in the optic tectum and the cerebellum was similarly induced in all experimental groups, showing that egr-1 induction in the anterior preoptic area of ascending males was specific to this brain region. Because egr-1 codes for a transcription factor important in neural plasticity, induction of egr-1 in the anterior preoptic area by social opportunity could be an early trigger in the molecular cascade that culminates in enhanced fertility and other long-term physiological changes associated with dominance

    Systematic evaluation of non-animal test methods for skin sensitisation safety assessment

    Get PDF
    The need for non-animal data to assess skin sensitisation properties of substances, especially cosmetics ingredients, has spawned the development of many in vitro methods. As it is widely believed that no single method can provide a solution, the Cosmetics Europe Skin Tolerance Task Force has defined a three-phase framework for the development of a non-animal testing strategy for skin sensitisation potency prediction. The results of the first phase - systematic evaluation of 16 test methods - are presented here. This evaluation involved generation of data on a common set of ten substances in all methods and systematic collation of information including the level of standardisation, existing test data, potential for throughput, transferability and accessibility in cooperation with the test method developers. A workshop was held with the test method developers to review the outcome of this evaluation and to discuss the results. The evaluation informed the prioritisation of test methods for the next phase of the non-animal testing strategy development framework. Ultimately, the testing strategy - combined with bioavailability and skin metabolism data and exposure consideration - is envisaged to allow establishment of a data integration approach for skin sensitisation safety assessment of cosmetic ingredients

    Synapsin II Is Involved in the Molecular Pathway of Lithium Treatment in Bipolar Disorder

    Get PDF
    Bipolar disorder (BD) is a debilitating psychiatric condition with a prevalence of 1–2% in the general population that is characterized by severe episodic shifts in mood ranging from depressive to manic episodes. One of the most common treatments is lithium (Li), with successful response in 30–60% of patients. Synapsin II (SYN2) is a neuronal phosphoprotein that we have previously identified as a possible candidate gene for the etiology of BD and/or response to Li treatment in a genome-wide linkage study focusing on BD patients characterized for excellent response to Li prophylaxis. In the present study we investigated the role of this gene in BD, particularly as it pertains to Li treatment. We investigated the effect of lithium treatment on the expression of SYN2 in lymphoblastoid cell lines from patients characterized as excellent Li-responders, non-responders, as well as non-psychiatric controls. Finally, we sought to determine if Li has a cell-type-specific effect on gene expression in neuronal-derived cell lines. In both in vitro models, we found SYN2 to be modulated by the presence of Li. By focusing on Li-responsive BD we have identified a potential mechanism for Li response in some patients

    Nest Making and Oxytocin Comparably Promote Wound Healing in Isolation Reared Rats

    Get PDF
    Background: Environmental enrichment (EE) fosters attachment behavior through its effect on brain oxytocin levels in the hippocampus and other brain regions, which in turn modulate the hypothalamic-pituitary axis (HPA). Social isolation and other stressors negatively impact physical healing through their effect on the HPA. Therefore, we reasoned that: 1) provision of a rat EE (nest building with Nestlets®) would improve wound healing in rats undergoing stress due to isolation rearing and 2) that oxytocin would have a similar beneficial effect on wound healing. Methodology/Principal Findings: In the first two experiments, we provided isolation reared rats with either EE or oxytocin and compared their wound healing to group reared rats and isolation reared rats that did not receive Nestlets or oxytocin. In the third experiment, we examined the effect of Nestlets on open field locomotion and immediate early gene (IEG) expression. We found that isolation reared rats treated with Nestlets a) healed significantly better than without Nestlets, 2) healed at a similar rate to rats treated with oxytocin, 3) had decreased hyperactivity in the open field test, and 4) had normalized IEG expression in brain hippocampus. Conclusions/Significance: This study shows that when an EE strategy or oxytocin is given to isolation reared rats, the peripheral stress response, as measured by burn injury healing, is decreased. The findings indicate an association between the effect of nest making on wound healing and administration of the pro-bonding hormone oxytocin. Further elucidation of this animal model should lead to improved understanding of how EE strategies can ameliorate poor wound healing and other symptoms that result from isolation stress
    corecore