112 research outputs found

    Semiclassical Strings in AdS_5 x S^5 and Automorphic Functions

    Full text link
    Using AdS/CFT we derive from the folded spinning string ordinary differential equations for the anomalous dimension of the dual N=4 SYM twist-two operators at strong coupling. We show that for large spin the asymptotic solutions have the Gribov-Lipatov recirocity property. To obtain this result we use a hidden modular invariance of the energy-spin relation of the folded spinning string. Further we identify the Moch-Vermaseren-Vogt (MVV) relations, which were first recognized in plain QCD calculations, as the recurrence relations of the asymptotic series ansatz.Comment: 4 page

    Signs of late infall and possible planet formation around DR Tau using VLT/SPHERE and LBTI/LMIRCam

    Get PDF
    Context. Protoplanetary disks around young stars often contain substructures like rings, gaps, and spirals that could be caused by interactions between the disk and forming planets. Aims: We aim to study the young (1-3 Myr) star DR Tau in the near-infrared and characterize its disk, which was previously resolved through submillimeter interferometry with ALMA, and to search for possible substellar companions embedded into it. Methods: We observed DR Tau with VLT/SPHERE both in polarized light (H broad band) and total intensity (in Y, J, H, and K spectral bands). We also performed L' band observations with LBTI/LMIRCam on the Large Binocular Telescope (LBT). We applied differential imaging techniques to analyze both the polarized data, using dual beam polarization imaging, and the total intensity data, using angular and spectral differential imaging. Results: We found two previously undetected spirals extending north-east and south of the star, respectively. We further detected an arc-like structure north of the star. Finally a bright, compact and elongated structure was detected at a separation of 303 ± 10 mas and a position angle 21.2 ± 3.7 degrees, just at the root of the north-east spiral arm. Since this feature is visible both in polarized light and total intensity and has a blue spectrum, itis likely caused by stellar light scattered by dust. Conclusions: The two spiral arms are at different separations from the star, have very different pitch angles, and are separated by an apparent discontinuity, suggesting they might have a different origin. The very open southern spiral arm might be caused by infalling material from late encounters with cloudlets into the formation environment of the star itself. The compact feature could be caused by interaction with a planet in formation still embedded in its dust envelope and it could be responsible for launching the north-east spiral. We estimate a mass of the putative embedded object of the order of few MJup. Reduced images are also available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/658/A63 Based on observations made with European Southern Observatory (ESO) telescopes at Paranal Observatory in Chile, under programs ID 0102.C-0453(A) and 1104.C-0416(A). It also makes partial use of LBT/LMIRCam observations under program ID 74

    Stirring in massive, young debris discs from spatially resolved Herschel images

    Get PDF
    A significant fraction of main-sequence stars are encircled by dusty debris discs, where the short-lived dust particles are replenished through collisions between planetesimals. Most destructive collisions occur when the orbits of smaller bodies are dynamically stirred up, either by the gravitational effect of locally formed Pluto-sized planetesimals (self-stirring scenario), or via secular perturbation caused by an inner giant planet (planetary stirring). The relative importance of these scenarios in debris systems is unknown. Here we present new Herschel Space Observatory imagery of 11 discs selected from the most massive and extended known debris systems. All discs were found to be extended at far-infrared wavelengths, five of them being resolved for the first time. We evaluated the feasibility of the self-stirring scenario by comparing the measured disc sizes with the predictions of the model calculated for the ages of our targets. We concluded that the self-stirring explanation works for seven discs. However, in four cases, the predicted pace of outward propagation of the stirring front, assuming reasonable initial disc masses, was far too low to explain the radial extent of the cold dust. Therefore, for HD 9672, HD 16743, HD 21997, and HD 95086, another explanation is needed. We performed a similar analysis for {\ss} Pic and HR 8799, reaching the same conclusion. We argue that planetary stirring is a promising possibility to explain the disk properties in these systems. In HR 8799 and HD 95086 we may already know the potential perturber, since their known outer giant planets could be responsible for the stirring process. Our study demonstrates that among the largest and most massive debris discs self-stirring may not be the only active scenario, and potentially planetary stirring is responsible for destructive collisions and debris dust production in a number of systems.Comment: Accepted for publication in MNRAS, 22 pages, 7 figures, 6 tables (abstract abridged due to arXiv requirements

    YETI observations of the young transiting planet candidate CVSO 30 b

    Get PDF
    CVSO 30 is a unique young low-mass system, because, for the first time, a close-in transiting and a wide directly imaged planet candidates are found around a common host star. The inner companion, CVSO 30 b, is the first possible young transiting planet orbiting a previously known weak-lined T-Tauri star. With five telescopes of the 'Young Exoplanet Transit Initiative' (YETI) located in Asia, Europe and South America we monitored CVSO 30 over three years in a total of 144 nights and detected 33 fading events. In two more seasons we carried out follow-up observations with three telescopes. We can confirm that there is a change in the shape of the fading event between different observations and that the fading event even disappears and reappears. A total of 38 fading event light curves were simultaneously modelled. We derived the planetary, stellar, and geometrical properties of the system and found them slightly smaller but in agreement with the values from the discovery paper. The period of the fading event was found to be 1.36 s shorter and 100 times more precise than the previous published value. If CVSO 30 b would be a giant planet on a precessing orbit, which we cannot confirm, yet, the precession period may be shorter than previously thought. But if confirmed as a planet it would be the youngest transiting planet ever detected and will provide important constraints on planet formation and migration time-scales.Comment: 14 pages (20 with appendix), 7 figures (16 with appendix), 6 tables (7 with appendix

    Quantum kink and its excitations

    Full text link
    We show how detailed properties of a kink in quantum field theory can be extracted from field correlation functions. This makes it possible to study quantum kinks in a fully non-perturbative way using Monte Carlo simulations. We demonstrate this by calculating the kink mass as well as the spectrum and approximate wave functions of its excitations. This way of measuring the kink mass has clear advantages over the existing approaches based on creation and annihilation operators or the kink free energy. Our methods are straightforward to generalise to more realistic theories and other defect types.Comment: 21 pages, 11 figures, v2: typos corrected, references adde

    Debris Disks: Probing Planet Formation

    Full text link
    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km in size) typically form in protoplanetary disks. Gas is now seen long into the debris disk phase. Some of this is secondary implying planetesimals have a Solar System comet-like composition, but some systems may retain primordial gas. Ongoing planet formation processes are invoked for some debris disks, such as the continued growth of dwarf planets in an unstirred disk, or the growth of terrestrial planets through giant impacts. Planets imprint structure on debris disks in many ways; images of gaps, clumps, warps, eccentricities and other disk asymmetries, are readily explained by planets at >>5au. Hot dust in the region planets are commonly found (<5au) is seen for a growing number of stars. This dust usually originates in an outer belt (e.g., from exocomets), although an asteroid belt or recent collision is sometimes inferred.Comment: Invited review, accepted for publication in the 'Handbook of Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018

    Water in the terrestrial planet-forming zone of the PDS 70 disk

    Get PDF
    Terrestrial and sub-Neptune planets are expected to form in the inner (<10 <10~AU) regions of protoplanetary disks. Water plays a key role in their formation, although it is yet unclear whether water molecules are formed in-situ or transported from the outer disk. So far Spitzer Space Telescope observations have only provided water luminosity upper limits for dust-depleted inner disks, similar to PDS 70, the first system with direct confirmation of protoplanet presence. Here we report JWST observations of PDS 70, a benchmark target to search for water in a disk hosting a large (54 \sim54~AU) planet-carved gap separating an inner and outer disk. Our findings show water in the inner disk of PDS 70. This implies that potential terrestrial planets forming therein have access to a water reservoir. The column densities of water vapour suggest in-situ formation via a reaction sequence involving O, H2_2, and/or OH, and survival through water self-shielding. This is also supported by the presence of CO2_2 emission, another molecule sensitive to UV photodissociation. Dust shielding, and replenishment of both gas and small dust from the outer disk, may also play a role in sustaining the water reservoir. Our observations also reveal a strong variability of the mid-infrared spectral energy distribution, pointing to a change of inner disk geometry.Comment: To appear in Nature on 24 July 2023. 21 pages, 10 figures; includes extended data. Part of the JWST MINDS Guaranteed Time Observations program's science enabling products. Spectra downloadable on Zenodo at https://zenodo.org/record/799102

    Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world’s mountains

    Get PDF
    Inland waters, including streams and rivers, are active components of the global carbon cycle. Despite the large areal extent of the world’s mountains, the role of mountain streams for global carbon fluxes remains elusive. Using recent insights from gas exchange in turbulent streams, we found that areal CO2 evasion fluxes from mountain streams equal or exceed those reported from tropical and boreal streams, typically regarded as hotspots of aquatic carbon fluxes. At the regional scale of the Swiss Alps, we present evidence that emitted CO2 derives from lithogenic and biogenic sources within the catchment and delivered by the groundwater to the streams. At a global scale, we estimate the CO2 evasion from mountain streams to 167 ± 1.5 Tg C yr−1, which is high given their relatively low areal contribution to the global stream and river networks. Our findings shed new light on mountain streams for global carbon fluxes
    corecore