834 research outputs found
Charge transport in poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers
We investigate the charge transport in synthetic DNA polymers built up from
single types of base pairs. In the context of a polaron-like model, for which
an electronic tight-binding system and bond vibrations of the double helix are
coupled, we present estimates for the electron-vibration coupling strengths
utilizing a quantum-chemical procedure. Subsequent studies concerning the
mobility of polaron solutions, representing the state of a localized charge in
unison with its associated helix deformation, show that the system for
poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA polymers, respectively possess
quantitatively distinct transport properties. While the former supports
unidirectionally moving electron breathers attributed to highly efficient
long-range conductivity the breather mobility in the latter case is
comparatively restrained inhibiting charge transport. Our results are in
agreement with recent experimental results demonstrating that poly(dG)-poly(dC)
DNA molecules acts as a semiconducting nanowire and exhibits better conductance
than poly(dA)-poly(dT) ones.Comment: 11 pages, 5 figure
Fast driving between arbitrary states of a quantum particle by trap deformation
By performing a slow adiabatic change between two traps of a quantum
particle, it is possible to transform an eigenstate of the original trap into
the corresponding eigenstate of the final trap. If no level crossings are
involved, the process can be made faster than adiabatic by setting first the
interpolated evolution of the wave function from its initial to its final form
and inferring from this evolution the trap deformation. We find a simple and
compact formula which gives the trap shape at any time for any interpolation
scheme. It is applicable even in complicated scenarios where there is no
adiabatic process for the desired state-transformation, e.g., if the state
changes its topological properties. We illustrate its use for the expansion of
a harmonic trap, for the transformation of a harmonic trap into a linear trap
and into an arbitrary number of traps of a periodic structure. Finally, we
study the creation of a node exemplified by the passage from the ground state
to the first excited state of a harmonic oscillator.Comment: 6 pages, 5 figure
Fast bias inversion of a double well without residual particle excitation
We design fast bias inversions of an asymmetric double well so that the
lowest states in each well remain so and free from residual motional
excitation. This cannot be done adiabatically, and a sudden bias switch
produces in general motional excitation. The residual excitation is suppressed
by complementing a predetermined fast bias change with a linear ramp whose
time-dependent slope compensates for the displacement of the wells. The
process, combined with vibrational multiplexing and demultiplexing, can produce
vibrational state inversion without exciting internal states, just by deforming
the trap.Comment: 7 pages, 6 figure
Shortcuts to adiabaticity for an ion in a rotating radially-tight trap
We engineer the fast rotation of a quantum particle confined in an
effectively one-dimensional, harmonic trap, for a predetermined rotation angle
and time, avoiding final excitation. Different schemes are proposed with
different speed limits that depend on the control capabilities. We also make
use of trap rotations to create squeezed states without manipulating the trap
frequencies.Comment: 11 pages, 6 figure
Fungal microbiota from rain water and pathogenicity of Fusarium species isolated from atmospheric dust and rainfall dust
In order to determine the presence of Fusarium spp. in atmospheric dust and rainfall dust, samples were collected during September 2007, and July, August, and October 2008. The results reveal the prevalence of airborne Fusarium species coming from the atmosphere of the South East coast of Spain. Five different Fusarium species were isolated from the settling dust: Fusarium oxysporum, F. solani, F. equiseti, F. dimerum, and F. proliferatum. Moreover, rainwater samples were obtained during significant rainfall events in January and February 2009. Using the dilution-plate method, 12 fungal genera were identified from these rainwater samples. Specific analyses of the rainwater revealed the presence of three species of Fusarium: F. oxysporum, F. proliferatum and F. equiseti. A total of 57 isolates of Fusarium spp. obtained from both rainwater and atmospheric rainfall dust sampling were inoculated onto melon (Cucumis melo L.) cv. Piñonet and tomato (Lycopersicon esculentum Mill.) cv. San Pedro. These species were chosen because they are the main herbaceous crops in Almeria province. The results presented in this work indicate strongly that spores or propagules of Fusarium are able to cross the continental barrier carried by winds from the Sahara (Africa) to crop or coastal lands in Europe. Results show differences in the pathogenicity of the isolates tested. Both hosts showed root rot when inoculated with different species of Fusarium, although fresh weight measurements did not bring any information about the pathogenicity. The findings presented above are strong indications that long-distance transmission of Fusarium propagules may occur. Diseases caused by species of Fusarium are common in these areas. They were in the past, and are still today, a problem for greenhouses crops in Almería, and many species have been listed as pathogens on agricultural crops in this region. Saharan air masses dominate the Mediterranean regions. The evidence of long distance dispersal of Fusarium spp. by atmospheric dust and rainwater together with their proved pathogenicity must be taken into account in epidemiological studies
Separation of particles leading to decay and unlimited growth of energy in a driven stadium-like billiard
A competition between decay and growth of energy in a time-dependent stadium
billiard is discussed giving emphasis in the decay of energy mechanism. A
critical resonance velocity is identified for causing of separation between
ensembles of high and low energy and a statistical investigation is made using
ensembles of initial conditions both above and below the resonance velocity.
For high initial velocity, Fermi acceleration is inherent in the system.
However for low initial velocity, the resonance allies with stickiness hold the
particles in a regular or quasi-regular regime near the fixed points,
preventing them from exhibiting Fermi acceleration. Also, a transport analysis
along the velocity axis is discussed to quantify the competition of growth and
decay of energy and making use distributions of histograms of frequency, and we
set that the causes of the decay of energy are due to the capture of the orbits
by the resonant fixed points
Electronic structure of crystalline binary and ternary Cd-Te-O compounds
The electronic structure of crystalline CdTe, CdO, -TeO,
CdTeO and CdTeO is studied by means of first principles
calculations. The band structure, total and partial density of states, and
charge densities are presented. For -TeO and CdTeO, Density
Functional Theory within the Local Density Approximation (LDA) correctly
describes the insulating character of these compounds. In the first four
compounds, LDA underestimates the optical bandgap by roughly 1 eV. Based on
this trend, we predict an optical bandgap of 1.7 eV for CdTeO. This
material shows an isolated conduction band with a low effective mass, thus
explaining its semiconducting character observed recently. In all these oxides,
the top valence bands are formed mainly from the O 2p electrons. On the other
hand, the binding energy of the Cd 4d band, relative to the valence band
maximum, in the ternary compounds is smaller than in CdTe and CdO.Comment: 13 pages, 15 figures, 2 tables. Accepted in Phys Rev
- …
