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Abstract

We investigate the charge transport in synthetic DNA polymers built up
from single types of base pairs. In the context of a polaron-like model,
for which an electronic tight-binding system and bond vibrations of the
double helix are coupled, we present estimates for the electron-vibration
coupling strengths utilizing a quantum-chemical procedure. Subsequent
studies concerning the mobility of polaron solutions, representing the state
of a localized charge in unison with its associated helix deformation, show
that the system for poly(dG)-poly(dC) and poly(dA)-poly(dT) DNA poly-
mers, respectively possess quantitatively distinct transport properties.
While the former supports unidirectionally moving electron breathers at-
tributed to highly efficient long-range conductivity the breather mobility
in the latter case is comparatively restrained inhibiting charge transport.
Our results are in agreement with recent experimental results demon-
strating that poly(dG)-poly(dC) DNA molecules acts as a semiconducting
nanowire and exhibits better conductance than poly(dA)-poly(dT) ones.

PACS numbers: 87.-15.v, 63.20.Kr, 63.20.Ry

1 Introduction

Particularly with view to possible applications in molecular electronics based
on biomaterials electronic transport (ET) through DNA has recently become
of intensified interest [1],[2]. Although the debate whether DNA constitutes a
conductor is still ongoing, there exist already strong experimental evidence that
DNA forms an effectively one-dimensional molecular wire [3]. Among several
theoretical attempts to describe the charge transport mechanism in DNA the
polaron approach has turned out lately to be a promising candidate for modeling
constructive interplay between the charge carrying system and vibrational de-
grees of freedom of the DNA conspiring to establish coherent ET [4]-[8]. Recent
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experiments are in support of the polaron mechanism for ET in DNA polymers
[9]. The present study deals with the theoretical description of ET in synthet-
ically produced DNA polymers consisting of a single type of base pairs, i.e.
either poly(dG)-poly(dC) or poly(dA)-poly(dT) DNA polymers [10]. Utilizing
a nonlinear approach based on the concept of breather and polaron solutions we
explore whether conductivity depends on the type of the DNA polymer which
might be of interest for the design of synthetic molecular wires. Moreover, we
ameliorate preceding studies of ET in DNA [11],[12] in the sense that, instead
of adjusting the coupling parameters, we use now credible estimates for them
derived with the help of quantum-chemical methods.

2 Model for polaron-like charge transport in DNA

Our model of charge transport in DNA is based on the finding that the charge
migration process is dominantly influenced by the transverse vibrations of the
bases relative to each other in radial direction within a base pair plane [13].
In fact, the impact of other vibrational degrees of freedom (e.g. twist motions,
helical pitch changes and longitudinal acoustic phonons along the strands which
are significantly restrained by the backbone rigidity) can be expected to be
negligible with respect to ET in DNA. Hence, the motion can be viewed as
confined to the base pair planes [14].

The Hamiltonian for the ET along a strand in DNA comprises two parts

H = Hel + Hvib , (1)

with Hel is the part which describes the ET over the base pairs and Hvib rep-
resent the dynamics of radial vibrations of the base pairs . The electronic part
is given by a tight-binding system

Hel =
∑

n

En |cn|
2 − Vn n−1

(

c∗ncn−1 + cnc∗n−1

)

. (2)

The index n denotes the site of the n−th base on a strand and |cn|
2 determines

the probability to find the electron (charge) residing at this site. En is the
local electronic energy and Vnn−1 is the transfer matrix element mediating the
transport of the electron along the stacked base pairs. We make the usual
assumption that ET takes place only along the base pair sequence on a strand
excluding inter-strand ET.

The vibronic part of the Hamiltonian Hvib models dynamical changes of the
radial equilibrium positions of the bases. Supposing that these radial vibrations
can be treated classically and harmonically we represent Hvib as

Hvib =
1

2

∑

n

[

1

M
(p r

n)
2

+ M Ω2
r r2

n

]

. (3)

The radial coordinates rn quantify the radial displacements of the base units
from their equilibrium positions along the line bridging two bases of a base pair
within the base pair plane. M denotes the reduced mass and Ωr is the harmonic
frequency. Due to the constraint enforced by the sugar-phosphate backbone
radial displacements lead not only to changes of the equilibrium lengths of the
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Figure 1: Sketch of the structure of the DNA model. The bases are represented
by bullits and the geometrical parameters R0, l0, θ0, rn and dn n−1 are indicated.

hydrogen bonds (bridging two bases of a base pair) but are also connected with
a change of the three-dimensional distance between two consecutive bases on
a strand entailing deformations of the corresponding covalent bonds. In an
expansion up to first order around the equilibrium positions [15] this stacking-
distance is determined by

dn n−1 =
R0

l0
( 1 − cos θ0 ) (rn + rn−1) . (4)

The geometrical parameters R0, θ0 and l0 determine the equilibrium value of
the radius, the twist angle between two adjacent base pairs, and the equilib-
rium length of the covalent bond linking two consecutive bases along a strand,
respectively. The latter is given by

l0 =

√

a2 + 4R2
0 sin2(θ0/2) , (5)

with a being the distance between neighboring base pairs measured along the
orientation of the helix axis. A sketch of the structure of the DNA model and the
designation of the geometrical parameters R0, l0, θ0, rn and dn n−1 is presented
in Figure 1.

With respect to the interaction between the electronic and the vibrational
degrees of freedom variable, cn and rn, respectively, it is assumed that the elec-
tronic parameters En and Vn n−1 are modified by displacements of the bases
within the base pairs. As a quantum-chemical computation of the geometry
dependence of the electronic parameters En and Vn n−1 reveals their most sig-
nificant modulation originates from radial distortions of the helix which are
related with hydrogen and covalent bond deformations, respectively. However,
the influence of small angle deformations on the values of the electronic param-
eters can be discarded (see also further below).
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The modulation of the on-site electronic energy E0 by the radial vibrations
of the base pairs is expressed as

En = E0 + k rn . (6)

On the other hand the actual charge occupation has its impact on the local
radial distortion of the helix. Furthermore, the transfer matrix elements Vn n−1

are assumed to depend on the three-dimensional stacking-distance between two
consecutive bases on a strand as follows

Vn n−1 = V0 (1 − α dn n−1) . (7)

The quantity α regulates how strong Vn n−1 is influenced by the distance.
As typical parameters for DNA molecules one finds [13],[15]: a = 3.4Å,

R0 ≈ 10Å, θ0 = 36◦, E0 = 0.1 eV , Ωr = 6.252 × 1012 s−1, V0 ≃ 0.1 eV and
M = 4.982 × 10−25kg.

After scaling the time as t → Ωr t one passes to the dimensionless quantities:

r̃n =

√

MΩ2
r

V0
rn , k̃ =

k
√

MΩ2
rV0

, Ẽ0 =
E0

V0
, (8)

α̃ =

√

V0

M Ω2
r

α , R̃0 =

√

M Ω2
r

V0
R0 , (9)

and for the sake of convenience the tildes are omitted in the following. The
values of the scaled parameters are obtained as R0 = 34.862 and l0 = 24.590.

The set of coupled equations of motion read as

i τ ċn = (E0 + k rn) cn

− (1 − α dn+1,n) cn+1 − (1 − α dn n−1) cn−1 (10)

r̈n = −rn − k |cn|
2 −

R0

l0
(1 − cos θ0)

× α
(

[c∗n+1cn + cn+1c
∗

n] + [c∗ncn−1 + cnc∗n−1]
)

(11)

and the ratio τ = ~ Ωr/V0 = 0.0411 determines the time scale separation be-
tween the slow electron motion and the fast bond vibrations. (Notice that any
E0cn term on the r.h.s. of Eq. (10) can be eliminated by a gauge transformation
cn → exp(−iE0t/τ)cn.)

Contrary to previous studies we use for our computations credible values for
the electron-mode coupling strengths k and α as a result of our a quantum-
chemical computational procedure.

In this work, we perform quantum-chemical calculations on symmetrical
homodimers consisting of two nucleoside Watson-Crick base pairs (adenosine-
thymidine (AT) and guanosine-cytidine (GC) base pair steps (BPS)) stacked
over each other to mimic the conventional A-DNA and B-DNA conformations
(for a schematic view see [16]). Taking into account DNA backbone at least in
form of intact sugar moieties, instead of substituting it by protons or methyl
groups, is necessary for the consistency of the calculations [17] and to correctly
describe charge transfer through DNA duplexes [18]. We use semiempirical
all-valence-electron PM3 Hamiltonian [19] within the MOPAC7 version of CI
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(configuration interaction) approximation, as described in detail in [20]. We
chose here PM3-CI method, but not an ab initio one, since
a) The molecular fragments involved are very large;
b) Similar ab initio calculations even for smaller segments experience difficulties
with SCF convergence [21];
c) The work [17] used similar semiempirical Hamiltonian (AM1) for analogous
molecular fragments;
d) PM3-CI approximation is good at describing excited states of nucleoside base
pair steps [20];
e) CI approximation is indispensable when charged states of nucleic acid bases
are considered using semiempirical quantum chemistry (cf., e.g., [22] and refer-
ences therein).

Here the effects of small, but non-negligible (up to 0.1 ), radial stretching
and compressing of Watson-Crick hydrogen bonds (WC H-bonds) on the MO
energies of the BPS under study have been estimated. Specifically, we perturbed
in the above sense the equilibrium lengths of the WC H-bonds in only one of the
base pairs in all the BPS involved and monitored the resulting changes in the
energies of the highest occupied molecular orbital and of the occupied molecular
orbital next to the highest one (HOMO and HOMO-1, respectively), as com-
pared with the equilibrium values of these energies. According to the Koopmans
theorem well known in quantum chemistry (cf., e.g., [21] and references therein),
the HOMO energy is approximately equal to molecular ionisation potential and
in the tight-binding approximation could be viewed as the site energy, whereas
the difference between the HOMO and HOMO-1 energies is approximately twice
the hopping integral. With this in mind, we were able to estimate k and α pa-
rameters of our model by calculating linear regression of the corresponding site
energy and hopping integral changes, respectively, onto WC H-bond distance
perturbations. We were able to arrive at a very tight linear correlation between
the former and the latter ones. Interestingly, we failed to reveal any correlation
between the tight-binding Hamiltonian parameter changes and BPS twist an-
gle/helical pitch perturbations (’helical pitch’ is the distance a in Eq. (5)). The
perturbations in the two latter parameters were also relatively small (up to 10
degrees and 0.1 , respectively). For the coupling parameters of the poly(dA)-
poly(dT) DNA polymer we obtain: k = 0.0778917 eV/ Å and α = 0.053835 Å−1.
The corresponding values for the poly(dG)-poly(dC) DNA polymer are deter-
mined as k = −0.090325 eV/ Å and α = 0.383333 Å−1.

That we are equipped with the quantum-chemical estimates of the coupling
parameters α and k is a definite step forward and distinguishes the present
study from previous ones [11],[12]. We emphasize that the quantum-chemical
estimates for the coupling parameters differ significantly from the ones used for
the model study in [11],[12] where these parameters, in lack of reliable values for
them, were treated as adjustable. As a consequence there is a difference between
the ET scenario described in [11],[12] and the one we are going to illustrate in
the following.

3 Stationary localized electron-vibron states

Caused by the nonlinear interplay between the electronic and the vibrational
degrees of freedom of the helix the formation of polaronic electron-vibration
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Figure 2: The spatial pattern of the polaronic electron-vibration compound.
(a) The electronic part. Full (dashed) line: poly(dA)-poly(dT) (poly(dG)-
poly(dC)) DNA polymer. (b) Unitless radial deformation pattern. Assignment
of line types as in (a).

compounds is possible [4]-[8],[11],[12]. We construct such localized stationary
solutions of the coupled system (10),(11) with the help of the nonlinear map
approach explained in detail in [23]. In Figure 2 we depict the profiles of the
(standing) polaron states for the poly(dA)-poly(dT) and the poly(dG)-poly(dC)
DNA polymer, respectively. In both cases the polarons are of fairly large exten-
sion (width). Regardless of the DNA polymer type the electronic wave function
is localized at lattice site and the envelope of the amplitudes decays monotoni-
cally and exponentially with growing distance from this central site (base pair).
However, the electronic wave function of the poly(dG)-poly(dC) DNA polymer
is stronger localized than the one of its poly(dA)-poly(dT) counterpart.

Accordingly, the attributed radial displacement patterns are exponentially
localized at the central lattice site. Concerning the resulting static radial helix
deformations we find that there is a drastic difference between the poly(dA)-
poly(dT) and the poly(dG)-poly(dC) DNA polymers. In the former case the
overall non-positive radial amplitudes imply that the H-bridges experience con-
tractions. In contrast, in the latter case the H-bridges get stretched. Neverthe-
less, these deformations are rather weak, i.e. on the order of 1.5 10−3 Å.

4 Charge transport

We study now the ET achieved by moving polarons. In fact, since the con-
structed polaron solutions are of fairly large extension (the half-width involves
. 100 lattice sites) we can expect them to be mobile. In order to activate po-
laron motion we used the discrete gradient method [24] to obtain suitable initial
perturbations of the momentum coordinates p r

n which initiate coherent motion
of the polaron compound.

We consider first the case of the poly(dG)-poly(dC) DNA polymer. The
propagation features are illustrated in Figure 3 where the spatio-temporal evo-
lution of the electronic and the vibrational radial breather are shown. For a
DNA lattice consisting of 300 sites (base pairs) the set of coupled equations
(10),(11) was integrated using a fourth-order Runge-Kutta method and peri-
odic boundary conditions were imposed. Maintenance of the norm conservation
∑

n |cn(t)|2 = 1 served to assure accurate computations.
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Figure 3: Breather motion along the DNA for the poly(dG)-poly(dC) DNA
polymer.(a) The electronic breather. (b) The vibrational breather. The radial
deformations rn(t) are given in dimensionless units.
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Figure 4: Time evolution of the first momentum of the electronic occupation
probability. Full (dashed) line: poly(dA)-poly(dT) (poly(dG)-poly(dC)) DNA
polymer.

The electronic component sets off to move directionally along the lattice in
unison with the vibrational amplitude pattern. However, there remains a small
amplitude vibrational breather at the initial position. In both cases the localized
structures are practically preserved apart from the arising amplitude breathing
indicating a periodic energy exchange between the electronic and vibrational
degrees of freedom. Hence, long-range ET is achievable. With the initial injec-
tion of kinetic energy the (vibrational) system possesses now increased energy
content so that we observe vibrational breathers with amplitudes being larger
than those of their static equivalents (cf. Figures 2 (b) and 3 (b)).

As the poly(dA)-poly(dT) DNA polymer is concerned we found that it does
not exhibit such good conductivity as its poly(dG)-poly(dC) counterpart. The
different propagation scenarios are properly illustrated using the time evolu-
tion of the first momentum of the electronic occupation probability defined
as n̄(t) =

∑

n n |cn(t)|2. One can clearly observe that in the(dG)-(dC) case
electron propagation proceeds unrestrictedly and unidirectionally with uniform
velocity (see Figure 4). Distinctly, the (dA)-(dT) electron moves itinerantly in
a confined region, comprising not more than five bases, around the starting site
restraining conductivity.

Regarding the energy storing capacity we monitored the normalized partic-
ipation number defined as

p(t) =
P (t)

P (0)
(12)

with

P (t) =
1

∑

n |cn(t)|4
. (13)

Since the electronic wave function is normalized the electron breather is com-
pletely confined at a single site if p = 1 and is uniformly extended over the
lattice if p is of the order N , viz. the number of lattice sites. Hence, p measures
how many sites are excited to contribute to the electronic breather pattern.
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Figure 5: The normalized participation number p(t). Full (dashed) line:
poly(dA)-poly(dT) (poly(dG)-poly(dC)) DNA polymer.

From Figure 5 we infer that the (dG)-(dC) electron breather extension per-
forms oscillations the maximal amplitudes of which correspond to slight growth
of the spatial width up to merely ≃ 1.2 times its starting value. In comparison,
the width of the (dA)-(dT) electronic amplitude pattern experiences stronger
broadening leading to a more extended electron state.

Considering the energy exchange between the electronic and vibrational sub-
systems we observe that this process evolves with frequency Ωr. Hence, the
dynamical distribution between the electronic and vibrational energy is driven
by the radial harmonic vibrations. In particular, the amount of kinetic en-
ergy flowing from the vibrational system into the electronic subsystem (ini-
tially the electronic kinetic energy is zero) is governed by the strength of the
coupling α. Apparently, in the (dG)-(dC) case the energy sharing is by far
more pronounced than in the (dA)-(dT) case due to the fact that the coupling
strengths differ by almost an order of magnitude, that is α(dG)−(dC) = 0.110
and α(dA)−(dT ) = 0.0154. This explains the large content of kinetic energy
injected from the vibrational degrees of freedom into the electronic ones in-
ducing high electron mobility. Furthermore, the k’s have opposite sign, i.e.
k(dA)−(dT ) = −0.2591 and k(dG)−(dC) = 0.2234, which leads to the sign differ-

ence in the radial distortion patterns r
(dA)−(dT )
n and r

(dG)−(dC)
n .

An open question which is subject of further research is whether the polarons
survive at ambient temperature. In spite of the values of the radial variables
being small the polaron is a compound object and the fact that the transfer
integral elements Vn n−1 ≈ 0.1 eV are larger than kB T ≈ 0.025 eV at T = 300 K,
suggests that they would survive. Equally the effect of an electric field during
the whole movement of the polaron is currently investigated.

In conclusion, we have found that conductivity in synthetically produced
DNA molecules depends on the type of the single base pair of which the poly-
mer is built of. While a polaron-like mechanism, relying on the nonlinear cou-
pling between the electron amplitude and radial vibrations of the base pairs,
is responsible for long-range and stable ET in (dG)-(dC) DNA polymers, the
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conductivity is comparatively weaker in the case of (dA)-(dT) DNA polymers.
Especially when it comes to designing synthetic molecular wires these findings
might be of interest. In fact, recent experiments suggest that ET through DNA
molecules proceeds by polaron hopping [9]. Furthermore, our results comply
with the findings of these experiments which show also that poly(dG)-poly(dC)
DNA polymers forms a better conductor than their poly(dA)-poly(dT) coun-
terparts.
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