69 research outputs found
Inverse remodelling algorithm identifies habitual manual activities of primates based on metacarpal bone architecture
Previously, a micro-finite element (micro-FE)-based inverse remodelling method was presented in the literature that reconstructs the loading history of a bone based on its architecture alone. Despite promising preliminary results, it remains unclear whether this method is sensitive enough to detect differences of bone loading related to pathologies or habitual activities. The goal of this study was to test the sensitivity of the inverse remodelling method by predicting joint loading histories of metacarpal bones of species with similar anatomy but clearly distinct habitual hand use. Three groups of habitual hand use were defined using the most representative primate species: manipulation (human), suspensory locomotion (orangutan), and knuckle-walking locomotion (bonobo, chimpanzee, gorilla). Nine to ten micro-computed tomography scans of each species (n=48in total) were used to create micro-FE models of the metacarpal head region. The most probable joint loading history was predicted by optimally scaling six load cases representing joint postures ranging from -75â(extension) to +75â(flexion). Predicted mean joint load directions were significantly different between knuckle-walking and non-knuckle-walking groups (p<0.05) and in line with expected primary hand postures. Mean joint load magnitudes tended to be larger in species using their hands for locomotion compared to species using them for manipulation. In conclusion, this study shows that the micro-FE-based inverse remodelling method is sensitive enough to detect differences of joint loading related to habitual manual activities of primates and might, therefore, be useful for palaeoanthropologists to reconstruct the behaviour of extinct species and for biomedical applications such as detecting pathological joint loading
Evidence for habitual climbing in a Pleistocene hominin in South Africa
Bipedalism is a defining trait of the hominin lineage, associated with a transition from a more arboreal to a more terrestrial environment. While there is debate about when modern human-like bipedalism first appeared in hominins, all known South African hominins show morphological adaptations to bipedalism, suggesting that this was their predominant mode of locomotion. Here we present evidence that hominins preserved in the Sterkfontein Caves practiced two different locomotor repertoires. The trabecular structure of a proximal femur (StW 522) attributed to Australopithecus africanus exhibits a modern human-like bipedal locomotor pattern, while that of a geologically younger specimen (StW 311) attributed to either Homo sp. or Paranthropus robustus exhibits a pattern more similar to nonhuman apes, potentially suggesting regular bouts of both climbing and terrestrial bipedalism. Our results demonstrate distinct morphological differences, linked to behavioral differences between Australopithecus and later hominins in South Africa and contribute to the increasing evidence of locomotor diversity within the hominin clade
Metacarpal trabecular bone varies with distinct hand-positions used in hominid locomotion
Trabecular bone remodels during life in response to loading and thus should, at least in part, reflect potential variation in the magnitude, frequency and direction of joint loading across different hominid species. Here we analyse the trabecular structure across all non-pollical metacarpal distal heads (Mc2-5) in extant great apes, expanding on previous volume of interest and whole-epiphysis analyses that have largely focussed on only the first or third metacarpal. Specifically, we employ both a univariate statistical mapping and a multivariate approach to test for both inter-ray and interspecific differences in relative trabecular bone volume fraction (RBV/TV) and degree of anisotropy (DA) in Mc2-5 subchondral trabecular bone. Results demonstrate that while DA values only separate Pongo from African apes (Pan troglodytes, Pan paniscus, Gorilla gorilla), RBV/TV distribution varies with the predicted loading of the metacarpophalangeal (McP) joints during locomotor behaviours in each species. Gorilla exhibits a relatively dorsal distribution of RBV/TV consistent with habitual hyper-extension of the McP joints during knuckle-walking, whereas Pongo has a palmar distribution consistent with flexed McP joints used to grasp arboreal substrates. Both Pan species possess a disto-dorsal distribution of RBV/TV, compatible with multiple hand postures associated with a more varied locomotor regime. Further inter-ray comparisons reveal RBV/TV patterns consistent with varied knuckle-walking postures in Pan species in contrast to higher RBV/TV values toward the midline of the hand in Mc2 and Mc5 of Gorilla, consistent with habitual palm-back knuckle-walking. These patterns of trabecular bone distribution and structure reflect different behavioural signals that could be useful for determining the behaviours of fossil hominins
Inverse remodelling algorithm identifies habitual manual activities of primates based on metacarpal bone architecture
Previously, a micro-finite element (micro-FE)-based inverse remodelling method was presented in the literature that reconstructs the loading history of a bone based on its architecture alone. Despite promising preliminary results, it remains unclear whether this method is sensitive enough to detect differences of bone loading related to pathologies or habitual activities. The goal of this study was to test the sensitivity of the inverse remodelling method by predicting joint loading histories of metacarpal bones of species with similar anatomy but clearly distinct habitual hand use. Three groups of habitual hand use were defined using the most representative primate species: manipulation (human), suspensory locomotion (orangutan), and knuckle-walking locomotion (bonobo, chimpanzee, gorilla). Nine to ten micro-computed tomography scans of each species ( n=48 in total) were used to create micro-FE models of the metacarpal head region. The most probable joint loading history was predicted by optimally scaling six load cases representing joint postures ranging from â75â (extension) to +75â (flexion). Predicted mean joint load directions were significantly different between knuckle-walking and non-knuckle-walking groups ( p<0.05 ) and in line with expected primary hand postures. Mean joint load magnitudes tended to be larger in species using their hands for locomotion compared to species using them for manipulation. In conclusion, this study shows that the micro-FE-based inverse remodelling method is sensitive enough to detect differences of joint loading related to habitual manual activities of primates and might, therefore, be useful for palaeoanthropologists to reconstruct the behaviour of extinct species and for biomedical applications such as detecting pathological joint loading
Computational Homogenization of Architectured Materials
Architectured materials involve geometrically engineered distributions of microstructural phases at a scale comparable to the scale of the component, thus calling for new models in order to determine the effective properties of materials. The present chapter aims at providing such models, in the case of mechanical properties. As a matter of fact, one engineering challenge is to predict the effective properties of such materials; computational homogenization using finite element analysis is a powerful tool to do so. Homogenized behavior of architectured materials can thus be used in large structural computations, hence enabling the dissemination of architectured materials in the industry. Furthermore, computational homogenization is the basis for computational topology optimization which will give rise to the next generation of architectured materials. This chapter covers the computational homogenization of periodic architectured materials in elasticity and plasticity, as well as the homogenization and representativity of random architectured materials
FE-Simulation in der klinischen Osteoporoseforschung
Altersbedingte Osteoporose erhöht des Frakturrisiko. Ăbliche Diagnoseverfahren basieren auf DXA. Leider sind diese ungenau und erklĂ€ren oft nicht die Effekte von Behandlungen. Eine neue Methode zur Bestimmung der Knochenfestigkeit beginnt derzeit, sich zu etablieren â die Finite-Elemente-Methode (FEM). Diese universelle, im Bereich der Technik weit verbreitete, Methode erlaubt es, die Diagnose und den Behandlungserfolg besser vorauszusagen als DXA. CT-basierende FE-Modelle sind stark von der Bildauflösung abhĂ€ngig. In diesem Ăberblicksartikel werden drei unterschiedliche Modelltypen (ÎŒCT, HR-pQCT, QCT) vorgestellt und die Ergebnisse von densitometrischen und FE-Analysen verglichen. Dabei waren die FE-Ergebnisse den densitometrischen immer ĂŒberlegen. DarĂŒber hinaus erlaubt die FEM die Angabe eines biomechanischen Frakturrisikos. Dieser Vorteil der FE-Methode muss jedoch im Licht der höheren Röntgendosen und Betriebskosten der CT-Bildgebung betrachtet werden. ZukĂŒnftig wird die FE-Methode klinisch eine weite Verbreitung finden â die Frage ist nur wann und wie
The Applicability of the Generalized Method of Cells for Analyzing Discontinuously Reinforced Composites
The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior
Identifikation optimaler Parameter eines muskuloskelettalen Fingermodells
The literature of polarography is so vast that any new publication in the field is likely to have an impact comparable to that of a raindrop falling on an ocean. If, however, through some alchemy of the imagination, the raindrop transformed to quicksilver and accompanied by discharge of lightning ; and the ocean be a solution under carefully controlled conditions, then the effect may be measurable--even reproducible--and thus subject to rational interpretation. Since Jaroslav Heyrovsky\u27s pioneer work in the early nineteen twenties, many such drops have fallen, bringing the science and art of polarography to its present highly developed state. Though superseded by gas chromatography in current popularity and publication rate in this country, polarography has many devoted followers and an almost inexhaustible and growing literature. Within the field, frontiers now being explored include alternating current polarography, oscillographic polarography, derivative polarography, controlled potential polarography, and non-aqueous systems. The present work is in the latter two categories
- âŠ