392 research outputs found

    The Szemeredi-Trotter Theorem in the Complex Plane

    Full text link
    It is shown that nn points and ee lines in the complex Euclidean plane C2{\mathbb C}^2 determine O(n2/3e2/3+n+e)O(n^{2/3}e^{2/3}+n+e) point-line incidences. This bound is the best possible, and it generalizes the celebrated theorem by Szemer\'edi and Trotter about point-line incidences in the real Euclidean plane R2{\mathbb R}^2.Comment: 24 pages, 5 figures, to appear in Combinatoric

    Coloring Hypergraphs Induced by Dynamic Point Sets and Bottomless Rectangles

    Full text link
    We consider a coloring problem on dynamic, one-dimensional point sets: points appearing and disappearing on a line at given times. We wish to color them with k colors so that at any time, any sequence of p(k) consecutive points, for some function p, contains at least one point of each color. We prove that no such function p(k) exists in general. However, in the restricted case in which points appear gradually, but never disappear, we give a coloring algorithm guaranteeing the property at any time with p(k)=3k-2. This can be interpreted as coloring point sets in R^2 with k colors such that any bottomless rectangle containing at least 3k-2 points contains at least one point of each color. Here a bottomless rectangle is an axis-aligned rectangle whose bottom edge is below the lowest point of the set. For this problem, we also prove a lower bound p(k)>ck, where c>1.67. Hence for every k there exists a point set, every k-coloring of which is such that there exists a bottomless rectangle containing ck points and missing at least one of the k colors. Chen et al. (2009) proved that no such function p(k)p(k) exists in the case of general axis-aligned rectangles. Our result also complements recent results from Keszegh and Palvolgyi on cover-decomposability of octants (2011, 2012).Comment: A preliminary version was presented by a subset of the authors to the European Workshop on Computational Geometry, held in Assisi (Italy) on March 19-21, 201

    Polychromatic Coloring for Half-Planes

    Full text link
    We prove that for every integer kk, every finite set of points in the plane can be kk-colored so that every half-plane that contains at least 2k12k-1 points, also contains at least one point from every color class. We also show that the bound 2k12k-1 is best possible. This improves the best previously known lower and upper bounds of 43k\frac{4}{3}k and 4k14k-1 respectively. We also show that every finite set of half-planes can be kk colored so that if a point pp belongs to a subset HpH_p of at least 3k23k-2 of the half-planes then HpH_p contains a half-plane from every color class. This improves the best previously known upper bound of 8k38k-3. Another corollary of our first result is a new proof of the existence of small size \eps-nets for points in the plane with respect to half-planes.Comment: 11 pages, 5 figure

    Unsplittable coverings in the plane

    Get PDF
    A system of sets forms an {\em mm-fold covering} of a set XX if every point of XX belongs to at least mm of its members. A 11-fold covering is called a {\em covering}. The problem of splitting multiple coverings into several coverings was motivated by classical density estimates for {\em sphere packings} as well as by the {\em planar sensor cover problem}. It has been the prevailing conjecture for 35 years (settled in many special cases) that for every plane convex body CC, there exists a constant m=m(C)m=m(C) such that every mm-fold covering of the plane with translates of CC splits into 22 coverings. In the present paper, it is proved that this conjecture is false for the unit disk. The proof can be generalized to construct, for every mm, an unsplittable mm-fold covering of the plane with translates of any open convex body CC which has a smooth boundary with everywhere {\em positive curvature}. Somewhat surprisingly, {\em unbounded} open convex sets CC do not misbehave, they satisfy the conjecture: every 33-fold covering of any region of the plane by translates of such a set CC splits into two coverings. To establish this result, we prove a general coloring theorem for hypergraphs of a special type: {\em shift-chains}. We also show that there is a constant c>0c>0 such that, for any positive integer mm, every mm-fold covering of a region with unit disks splits into two coverings, provided that every point is covered by {\em at most} c2m/2c2^{m/2} sets

    Drawing Planar Graphs with a Prescribed Inner Face

    Full text link
    Given a plane graph GG (i.e., a planar graph with a fixed planar embedding) and a simple cycle CC in GG whose vertices are mapped to a convex polygon, we consider the question whether this drawing can be extended to a planar straight-line drawing of GG. We characterize when this is possible in terms of simple necessary conditions, which we prove to be sufficient. This also leads to a linear-time testing algorithm. If a drawing extension exists, it can be computed in the same running time

    Untangling polygons and graphs

    Full text link
    Untangling is a process in which some vertices of a planar graph are moved to obtain a straight-line plane drawing. The aim is to move as few vertices as possible. We present an algorithm that untangles the cycle graph C_n while keeping at least \Omega(n^{2/3}) vertices fixed. For any graph G, we also present an upper bound on the number of fixed vertices in the worst case. The bound is a function of the number of vertices, maximum degree and diameter of G. One of its consequences is the upper bound O((n log n)^{2/3}) for all 3-vertex-connected planar graphs.Comment: 11 pages, 3 figure

    Subsampling in Smoothed Range Spaces

    Full text link
    We consider smoothed versions of geometric range spaces, so an element of the ground set (e.g. a point) can be contained in a range with a non-binary value in [0,1][0,1]. Similar notions have been considered for kernels; we extend them to more general types of ranges. We then consider approximations of these range spaces through ε\varepsilon -nets and ε\varepsilon -samples (aka ε\varepsilon-approximations). We characterize when size bounds for ε\varepsilon -samples on kernels can be extended to these more general smoothed range spaces. We also describe new generalizations for ε\varepsilon -nets to these range spaces and show when results from binary range spaces can carry over to these smoothed ones.Comment: This is the full version of the paper which appeared in ALT 2015. 16 pages, 3 figures. In Algorithmic Learning Theory, pp. 224-238. Springer International Publishing, 201

    A Bichromatic Incidence Bound and an Application

    Full text link
    We prove a new, tight upper bound on the number of incidences between points and hyperplanes in Euclidean d-space. Given n points, of which k are colored red, there are O_d(m^{2/3}k^{2/3}n^{(d-2)/3} + kn^{d-2} + m) incidences between the k red points and m hyperplanes spanned by all n points provided that m = \Omega(n^{d-2}). For the monochromatic case k = n, this was proved by Agarwal and Aronov. We use this incidence bound to prove that a set of n points, no more than n-k of which lie on any plane or two lines, spans \Omega(nk^2) planes. We also provide an infinite family of counterexamples to a conjecture of Purdy's on the number of hyperplanes spanned by a set of points in dimensions higher than 3, and present new conjectures not subject to the counterexample.Comment: 12 page

    Recognizing and Drawing IC-planar Graphs

    Full text link
    IC-planar graphs are those graphs that admit a drawing where no two crossed edges share an end-vertex and each edge is crossed at most once. They are a proper subfamily of the 1-planar graphs. Given an embedded IC-planar graph GG with nn vertices, we present an O(n)O(n)-time algorithm that computes a straight-line drawing of GG in quadratic area, and an O(n3)O(n^3)-time algorithm that computes a straight-line drawing of GG with right-angle crossings in exponential area. Both these area requirements are worst-case optimal. We also show that it is NP-complete to test IC-planarity both in the general case and in the case in which a rotation system is fixed for the input graph. Furthermore, we describe a polynomial-time algorithm to test whether a set of matching edges can be added to a triangulated planar graph such that the resulting graph is IC-planar

    Isoperimetric Inequalities in Simplicial Complexes

    Full text link
    In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In particular, we present a Cheeger-type inequality, and a high-dimensional Expander Mixing Lemma. As a corollary, using the work of Pach, we obtain a connection between spectral properties of complexes and Gromov's notion of geometric overlap. Using the work of Gunder and Wagner, we give an estimate for the combinatorial expansion and geometric overlap of random Linial-Meshulam complexes
    corecore