7,119 research outputs found
Biaxial fatigue loading of notched composites
Thin walled, 2.54-cm (1-in.) diameter tubular specimens of T300/934 graphite/epoxy were fabricated and fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0/90)S and (+ or - 45)S; all tubes contained a 0.48-cm (3/16-in.) diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on the Hill plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good
Effects of 3-d and 4-d-transition metal substitutional impurities on the electronic properties of CrO2
We present first-principles based density functional theory calculations of
the electronic and magnetic structure of CrO2 with 3d (Ti through Cu) and 4d
(Zr through Ag) substitutional impurities. We find that the half-metallicity of
CrO2 remains intact for all of the calculated substitutions. We also observe
two periodic trends as a function of the number of valence electrons: if the
substituted atom has six or fewer valence electrons (Ti-Cr or Zr-Mo), the
number of down spin electrons associated with the impurity ion is zero,
resulting in ferromagnetic (FM) alignment of the impurity magnetic moment with
the magnetization of the CrO2 host. For substituent atoms with eight to ten
(Fe-Ni or Ru-Pd with the exception of Ni), the number of down spin electrons
contributed by the impurity ion remains fixed at three as the number
contributed to the majority increases from one to three resulting in
antiferromagnetic (AFM) alignment between impurity moment and host
magnetization. The origin of this variation is the grouping of the impurity
states into 3 states with approximate "t2g" symmetry and 2 states with
approximate "eg" symmetry. Ni is an exception to the rule because a
Jahn-Teller-like distortion causes a splitting of the Ni eg states. For Mn and
Tc, which have 8 valence electrons, the zero down spin and 3 down spin
configurations are very close in energy. For Cu and Ag atoms, which have 11
valence electrons, the energy is minimized when the substituent ion contributes
5 Abstract down-spin electrons. We find that the interatomic exchange
interactions are reduced for all substitutions except for the case of Fe for
which a modest enhancement is calculated for interactions along certain
crystallographic directions.Comment: 26 pages, 10 figures, 2 table
Recommended from our members
Revised target co-ordinates for the Beagle 2 lander
The revised, IAU 2000 target co-ordinates of the Mars Beagle 2 lander are 11.6oN, 90.75oE
Recommended from our members
Beagle to the Moon: nn experiment package to measure polar ice and volatiles in permanently shadowed areas or beneath the lunar surface
The Beagle Science Package is a flight qualified set of instruments which should be deployed to the lunar surface to answer the questions about water and volatiles present in permanently shadowed regions and/or beneath the surface
Mars rover sample return: An exobiology science scenario
A mission designed to collect and return samples from Mars will provide information regarding its composition, history, and evolution. At the same time, a sample return mission generates a technical challenge. Sophisticated, semi-autonomous, robotic spacecraft systems must be developed in order to carry out complex operations at the surface of a very distant planet. An interdisciplinary effort was conducted to consider how much a Mars mission can be realistically structured to maximize the planetary science return. The focus was to concentrate on a particular set of scientific objectives (exobiology), to determine the instrumentation and analyses required to search for biological signatures, and to evaluate what analyses and decision making can be effectively performed by the rover in order to minimize the overhead of constant communication between Mars and the Earth. Investigations were also begun in the area of machine vision to determine whether layered sedimentary structures can be recognized autonomously, and preliminary results are encouraging
Pipeline network features and leak detection by cross-correlation analysis of reflected waves
This paper describes progress on a new technique to detect pipeline features and leaks using signal processing of a pressure wave measurement. Previous work (by the present authors) has shown that the analysis of pressure wave reflections in fluid pipe networks can be used to identify specific pipeline features such as open ends, closed ends, valves, junctions, and certain types of bends. It was demonstrated that by using an extension of cross-correlation analysis, the identification of features can be achieved using fewer sensors than are traditionally employed. The key to the effectiveness of the technique lies in the artificial generation of pressure waves using a solenoid valve, rather than relying upon natural sources of fluid excitation. This paper uses an enhanced signal processing technique to improve the detection of leaks. It is shown experimentally that features and leaks can be detected around a sharp bend and up to seven reflections from features/ leaks can be detected, by which time the wave has traveled over 95 m. The testing determined the position of a leak to within an accuracy of 5%, even when the location of the reflection from a leak is itself dispersed over a certain distance and, therefore, does not cause an exact reflection of the wave
Developing an On-Line Interactive Health Psychology Module.
On-line teaching material in health psychology was developed which ensured a range of students could access appropriate material for their course and level of study. This material has been developed around the concept of smaller 'content chunks' which can be combined into whole units of learning (topics), and ultimately, a module. On the basis of the underlying philosophy that the medium is part of the message, we considered interactivity to be a key element in engaging the student with the material. Consequently, the key aim of this development was to stimulate and engage students, promoting better involvement with the academic material, and hence better learning. It was hoped that this was achieved through the development of material including linked programmes and supporting material, small Java Scripts and basic email, forms and HTML additions. This material is outlined as are some of the interactive activities introduced, and the preliminary student and tutor experience described
- …