16 research outputs found

    Usefulness of PCR-based assays to assess drug efficacy in Chagas disease chemotherapy: value and limitations

    Full text link
    One major goal of research on Chagas disease is the development of effective chemotherapy to eliminate the infection from individuals who have not yet developed cardiac and/or digestive disease manifestations. Cure evaluation is the more complex aspect of its treatment, often leading to diverse and controversial results. The absence of reliable methods or a diagnostic gold standard to assess etiologic treatment efficacy still constitutes a major challenge. In an effort to develop more sensitive tools, polymerase chain reaction (PCR)-based assays were introduced to detect low amounts of Trypanosoma cruzi DNA in blood samples from chagasic patients, thus improving the diagnosis and follow-up evaluation after chemotherapy. In this article, I review the main problems concerning drug efficacy and criteria used for cure estimation in treated chagasic patients, and the work conducted by different groups on developing PCR methodologies to monitor treatment outcome of congenital infections as well as recent and late chronic T. cruzi infections

    Quantitative and Qualitative Differences in the In Vivo Response of NKT Cells to Distinct α- and β-Anomeric Glycolipids

    No full text
    NKT cells represent a unique subset of immunoregulatory T cells that recognize glycolipid Ags presented by the MHC class I-like molecule CD1d. Because of their immunoregulatory properties, NKT cells are attractive targets for the development of immunotherapies. The prototypical NKT cell ligand alpha-galactosylceramide (alpha-GalCer), originally isolated from a marine sponge, has potent immunomodulatory activities in mice, demonstrating therapeutic efficacy against metastatic tumors, infections, and autoimmune diseases, but also has a number of adverse side effects. In vivo administration of alpha-GalCer to mice results in the rapid activation of NKT cells, which is characterized by cytokine secretion, surface receptor down-regulation, expansion, and secondary activation of a variety of innate and adaptive immune system cells. In this study, we have evaluated the in vivo immune response of mice to a set of structural analogues of alpha-GalCer. Our results show that, contrary to current thinking, beta-anomeric GalCer can induce CD1d-dependent biological activities in mice, albeit at lower potency than alpha-anomeric GalCer. In addition, we show that the response of NKT cells to distinct GalCer differs not only quantitatively, but also qualitatively. These findings indicate that NKT cells can fine-tune their immune responses to distinct glycolipid Ags in vivo, a property that may be exploited for the development of effective and safe NKT cell-based immunotherapies

    Mucosal CD8 Memory T Cells are selected in the periphery by an MHC Class I Molecule

    Get PDF
    The presence of immune memory at pathogen entry sites is a prerequisite for protection. Nevertheless, the mechanisms that warrant immunity at peripheral interfaces are not understood. Here we show that the non-classical MHC class I molecule, the thymus leukemia antigen (TL), induced on dendritic cells together with CD8aa on activated CD8αβ+T cells, mediates affinity-based selection of memory precursor cells. Furthermore, constitutive expression of TL on epithelial cells continues the selection of mature CD8αβ memory T cells. The TL-CD8αα-driven memory process is essential for the generation of memory CD8αß T cells in the intestine and leads to the accumulation of highly antigen sensitive CD8αβ memory T cells that form the first line of defense at the largest entry port for pathogens
    corecore