3,015 research outputs found

    Widespread Layers in Arabia Terra: Implications for Martian Geologic History

    Get PDF
    Layered rocks in Arabia Terra have been the focus of several recent papers. Studies have focused on the layers found in crater basins located in the southwest portion of the region. However, Mars Orbiter Camera (MOC) images have identified layered deposits across the region. Terrestrial layered rocks are usually sedimentary, and often deposited in water. Thus extensive layered sequences in Arabia Terra may indicate locations of past, major depositional basins on Mars. Other mechanisms can also create layered rocks, or the appearance of layered rocks, including volcanism (both lava flows and ash falls), wind-blown deposits, and wave-cut terraces at shorelines. By identifying where in the region layers occur, and classifying the layers according to morphology and albedo, past depositional environments may be identified. Arabia Terra is characterized by heavily cratered Noachian plains, as well as a rise from -4000 m in the northwest to 4000 m in the southeast (Mars Orbital Laser Altimeter [MOLA] datum). This slope may have provided a constraint on sediment deposition and thus layer formation. While most of the region is Noachian in age, a significant percentage of the area is identified as Hesperian. Although the history of the Arabia Terra initially seems to be straightforward cratered plains with several younger units atop them analysis of high-resolution imagery may reveal a more complex history

    Rover Exploration of Acidalia Mensa and Acidalia Planitia: Probing Mud Volcanoes to Sample Buried Sediments and Search for Ancient and Extant Life

    Get PDF
    Here we develop a plan to explore mud volcanoes near Acidalia Mensa with an MSL-class rover and propose a traverse based on geologic observations

    'Nano' Morphology and Element Signatures of Early Life on Earth: A New Tool for Assessing Biogenicity

    Get PDF
    The relatively young technology of NanoSIMS is unlocking an exciting new level of information from organic matter in ancient sediments. We are using this technique to characterize Proterozoic organic material that is clearly biogenic as a guide for interpreting controversial organic structures in either terrestrial or extraterrestrial samples. NanoSIMS is secondary ion mass spectrometry for trace element and isotope analysis at sub-micron resolution. In 2005, Robert et al. [1] combined NanoSIMS element maps with optical microscopic imagery in an effort to develop a new method for assessing biogenicity of Precambrian structures. The ability of NanoSIMS to map simultaneously the distribution of organic elements with a 50 nm spatial resolution provides new biologic markers that could help define the timing of life s development on Earth. The current study corroborates the work of Robert et al. and builds on their study by using NanoSIMS to map C, N (as CN), S, Si and O of both excellently preserved microfossils and less well preserved, non-descript organics in Proterozoic chert from the ca. 0.8 Ga Bitter Springs Formation of Australia

    The vascular bone marrow niche influences outcome in chronic myeloid leukemia via the E-selectin - SCL/TAL1-CD44 axis.

    Get PDF
    The endosteal bone marrow niche and vascular endothelial cells provide sanctuaries for leukemic cells. In murine chronic myeloid leukemia (CML) CD44 on leukemia cells and E-selectin on bone marrow endothelium are essential mediators for the engraftment of leukemic stem cells. We hypothesized that non-adhesion of CML-initiating cells to E-selectin on the bone marrow endothelium may lead to superior eradication of leukemic stem cells in CML after treatment with imatinib than imatinib alone. Indeed, here we show that treatment with the E-selectin inhibitor GMI-1271 in combination with imatinib prolongs survival of mice with CML via decreased contact time of leukemia cells with bone marrow endothelium. Non-adhesion of BCR-ABL1(+) cells leads to an increase of cell cycle progression and an increase of expression of the hematopoietic transcription factor and proto-oncogene Scl/Tal1 in leukemia-initiating cells. We implicate SCL/TAL1 as an indirect phosphorylation target of BCR-ABL1 and as a negative transcriptional regulator of CD44 expression. We show that increased SCL/TAL1 expression is associated with improved outcome in human CML. These data demonstrate the BCR-ABL1-specific, cell-intrinsic pathways leading to altered interactions with the vascular niche via the modulation of adhesion molecules - which could be exploited therapeutically in the future

    Layered Sediments, Rampart Craters, and Potential Fluvio-Lacustrine Activity in S.W. Arabia Terra, Mars: Support for a History of Aqueous Conditions

    Get PDF
    Arabia Terra is a unique area on Mars in that it is the only major, equatorial region characterized by high abundances of near-surface water (as measured by gamma ray and neutron spectroscopy). Vernal Crater is a 55 km-diameter structure in southwest Arabia Terra, centered at 6 N, 355.5 E. The crater includes layered sediments, potential remnants of fluvio-lacustrine activity, and indications of aeolian processes. Regional considerations, along with new THEMIS and MOC data, are being assessed to gain insight into the significance of the geomorphic units within Vernal Crater and the geologic history of SW Arabia Terra

    Regional Mapping and Spectral Analysis of Mounds in Acidalia Planitia, Mars

    Get PDF
    Acidalia Planitia is a approx.3000 km diameter planum located in the northern plains of Mars. It is believed to be a sedimentary basin containing an accumulation of sediments brought by Hesperian outflow channels that drained the Highlands. A large number of high-albedo mounds have been identified across this basin [1-2] and understanding the process that formed them should help us understand the history of this region. Farrand et al. [2] showed that the mounds are dark in THEMIS (Thermal Emission Imaging System) nighttime IR (infrared) image data. This implies that the mounds have a lower thermal inertia than the surrounding plains (Fig. 1), suggesting that the material of the mounds is fine-grained or unconsolidated. Farrand et al. [2] also reviewed potential analogs for the mounds and concluded that a combination of mud volcanoes with evaporites around geysers or springs is most consistent with all the data. We have built on this work by creating regional maps of the features and analyzing CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) data to see if there are mineralogical differences between the mounds and surrounding plains

    Diversification in the Archean Biosphere: Insight from NanoSIMS of Microstructures in the Farrel Quartzite of Australia

    Get PDF
    The nature of early life on Earth is difficult to assess because potential Early Archean biosignatures are commonly poorly preserved. Interpretations of such materials have been contested, and abiotic or epigenetic derivations have been proposed (summarized in [1]). Yet, an understanding of Archean life is of astrobiological importance, as knowledge of early evolutionary processes on Earth could provide insight to development of life on other planets. A recently-discovered assemblage of organic microstructures in approx.3 Ga charts of the Farrel Quartzite (FQ) of Australia [2-4] includes unusual spindle-like forms and a variety of spheroids. If biogenicity and syngeneity of these forms could be substantiated, the FQ assemblage would provide a new view of Archean life. Our work uses NanoSIMS to further assess the biogenicity and syngeneity of FQ microstructures. In prior NanoSIMS studies [5-6], we gained an understanding of nano-scale elemental distributions in undisputed microfossils from the Neoproterozoic Bitter Springs Formation of Australia. Those results provide a new tool with which to evaluate poorly preserved materials that we might find in Archean sediments and possibly in extraterrestrial materials. We have applied this tool to the FQ forms

    Candidate Landing Site for the Mars Science Laboratory: Vernal Crater, S.W. ARabia Terra

    Get PDF
    In the fall of 2009, the Mars Science Laboratory (MSL) will be launched to Mars. The purpose of this mission is to assess biologic potential and geology and to investigate planetary processes of relevance to past habitability. MSL will be able to provide visual, chemical, radiation, and environmental data with its suite of instruments [1]. In order to be selected for the MSL landing site, certain engineering requirements must be met [1] and the area should contain geologic features suggestive of past habitability, so that the overriding science goal of the mission will be attained. There are a total of 33 proposed landing sites as of the first MSL Landing Site Workshop held in Pasadena, CA from May 31st to June 2nd, 2006 [1]. There will be an opportunity to gather high resolution visual and hyperspectral data on all proposed landing sites from the now-orbiting Mars Reconnaissance Orbiter (MRO) which entered martian orbit and began its main science phase in November of 2006 [2]. The data being gathered are from: the high resolution imaging science experiment (HiRISE), the context (CTX) camera and the compact reconnaissance imaging spectrometer (CRISM) onboard the spacecraft. The footprints of these instruments are centered on a single point, and each proposer must submit these coordinates, along with the coordinates of the proposed landing ellipse. Data from these instruments, along with new MOC images and THEMIS mosaics, will be used to enhance our understanding of the geologic and engineering parameters of each site

    Principles for developing benchmark criteria for staff training in responsible gambling

    Get PDF
    One approach to minimizing the negative consequences of excessive gambling is staff training to reduce the rate of the development of new cases of harm or disorder within their customers. The primary goal of the present study was to assess suitable benchmark criteria for the training of gambling employees at casinos and lottery retailers. The study utilised the Delphi Method, a survey with one qualitative and two quantitative phases. A total of 21 invited international experts in the responsible gambling field participated in all three phases. A total of 75 performance indicators were outlined and assigned to six categories: (1) criteria of content, (2) modelling, (3) qualification of trainer, (4) framework conditions, (5) sustainability and (6) statistical indicators. Nine of the 75 indicators were rated as very important by 90 % or more of the experts. Unanimous support for importance was given to indicators such as (1) comprehensibility and (2) concrete action-guidance for handling with problem gamblers, Additionally, the study examined the implementation of benchmarking, when it should be conducted, and who should be responsible. Results indicated that benchmarking should be conducted every 1–2 years regularly and that one institution should be clearly defined and primarily responsible for benchmarking. The results of the present study provide the basis for developing a benchmarking for staff training in responsible gambling

    Jarosite in Gale Crater, Mars: The Importance of Temporal and Spatial Variability and Implications for Habitiability

    Get PDF
    The Curiosity rover has recently found evidence for small amounts of jarosite, a ferric sulfate, in the Pahrump Hills region at the base of Aeolis Mons (Mount Sharp), Gale crater. While jarosite has been described previously at other locations on Mars, including several sites at Meridiani Planum (explored by the Opportunity rover; and Mawrth Vallis (by remote MRO-CRISM observations; this is the first identification in Gale. Jarosite is interpreted to be a mineral indicator of acidic conditions (pH less than 4; on Earth, it is most commonly found in acid rock-drainage or acid sulfate soil environments. However, jarosite has also been described from a number of terrestrial environments where widespread acidic conditions are not prevalent. As a case study, we describe here an occurrence of sedimentary pyrite nodules that have been variably oxidized in situ to gypsum, schwertmannite, K-/Na-jarosite and iron oxides in a polar desert environment on Devon Island, Nunavut, Canada. Remarkably, these nodules occur in loosely consolidated carbonate sediments, which would have required a higher pH environment at their time of formation and deposition. Thus, acidic conditions may only exist at a small (sub-cm) scale or in a restricted temporal window in an otherwise well-buffered environment. On Devon Island, the jarosite occurs in the most oxidized nodules and is never associated directly with pyrite. Schwertmannite, a metastable iron oxyhydroxysulfate that can form at pH higher than that required for jarosite, occurs in association with partially oxidized pyrite. The paragenetic sequence observed here suggests initial formation of schwertmannite and late-stage precipitation of jarosite in restricted micro-environments, possibly forming via transformation of an amorphous schwertmannite-like phase. While the carbonate environment on Devon Island differs significantly from that of Gale crater, i.e., where we find predominantly basaltic sedimentary rocks, this terrestrial analog provides insight into the significance of jarosite with respect to habitability. For example, the variable abundance of jarosite on Mars and possibly in Gale crater points to potentially localized conditions favorable for jarosite formation. Interestingly, small amounts of sulfide minerals have also been detected by Curiosity at Yellowknife Bay; oxidation of sulfide minerals at Pahrump could explain the presence of small amounts of jarosite. The iron-rich rocks at Pahrump may also represent relatively altered basaltic sediments, or they could be sediments that were altered further by a fluid with a distinct, possibly more acidic, composition. In addition, the abundance of iron-rich amorphous material in Gale rocks allows for the possibility that pre-cursor, iron-bearing phases transform to jarosite post-depositionally. Thus, the occurrence of jarosite at Pahrump could reflect changing paleoenvironmental conditions, though continuing study of its context and textural relationships should provide a fuller understanding of the significance of this mineral to past fluid compositions and past habitability at Gale crater
    corecore