999 research outputs found
Prolonged dopamine signalling in striatum signals proximity and value of distant rewards
Predictions about future rewarding events have a powerful influence on behaviour. The phasic spike activity of dopamine-containing neurons, and corresponding dopamine transients in the striatum, are thought to underlie these predictions, encoding positive and negative reward prediction errors. However, many behaviours are directed towards distant goals, for which transient signals may fail to provide sustained drive. Here we report an extended mode of reward-predictive dopamine signalling in the striatum that emerged as rats moved towards distant goals. These dopamine signals, which were detected with fast-scan cyclic voltammetry (FSCV), gradually increased or—in rare instances—decreased as the animals navigated mazes to reach remote rewards, rather than having phasic or steady tonic profiles. These dopamine increases (ramps) scaled flexibly with both the distance and size of the rewards. During learning, these dopamine signals showed spatial preferences for goals in different locations and readily changed in magnitude to reflect changing values of the distant rewards. Such prolonged dopamine signalling could provide sustained motivational drive, a control mechanism that may be important for normal behaviour and that can be impaired in a range of neurologic and neuropsychiatric disorders.National Institutes of Health (U.S.) (Grant R01 MH060379)National Parkinson Foundation (U.S.)Cure Huntington’s Disease Initiative, Inc. (Grant A-5552)Stanley H. and Sheila G. Sydney Fun
The nature of Garner interference: The role of uncertainty, information, and variation in the breakdown in selective attention
The popular measure of Garner Interference specifies the detriment to performance with the task-relevant attribute in the presence of a randomly varying distractor. But is irrelevant variation per se responsible for this breakdown of selective attention as the traditional account suggests? In this study we identified an overlooked alternative account – increased irrelevant information – which threatens the validity of the variation interpretation. We designed a new condition within the Garner paradigm, Roving Baseline, which allowed for dissociating the separate and combined contributions of information and variation at both macro and micro levels of analysis. A third account, increased number of stimuli or stimulus uncertainty, was also considered as well as the rival interpretations of configural processing and change detection. Our conceptual assay was complemented by a pair of dedicated experiments that included the novel Roving Baseline condition. The results of the theoretical analysis and of the experiments converged on supporting variability as the source of Garner interference. We found no evidence for an influence of information or of stimulus uncertainty. Our study thus adds further support for W. R. Garner's original intuition when designing the paradigm and the interference bearing his name
The other side of recovery: validation of the Portuguese version of the subjective experiences of psychosis scale.
BACKGROUND:
The aim of this study was to develop and validate a Portuguese version of The Subjective Experiences of Psychosis Scale (SEPS) for use in Portuguese-speaking populations in order to provide a self-report instrument to assess and monitor dimensions of psychotic experiences, translating patient's perspective and experience in terms of recovery from psychosis.
METHODS:
The sample consisted of 30 participants with psychotic disorders who had recently experienced delusions or hallucinations. The SEPS was completed along with other observer-based assessments and self-report questionnaires, such as the Brief Psychiatric Rating Scale, the Insight and Treatment Attitudes Questionnaire and the Function Assessment Short Test.
RESULTS:
Two main factors representing the positive and negative components of each subscale were identified. We obtained good internal consistency and test-retest reliability for the positive and negative components of all subscales. The subscales of SEPS correlated with observer-based assessments and self-report questionnaires.
CONCLUSIONS:
The Portuguese version of the SEPS is a useful tool in the assessment and monitoring of psychotic symptoms
Assessing animal affect: an automated and self-initiated judgement bias task based on natural investigative behaviour
Scientific methods for assessing animal affect, especially affective valence (positivity or negativity), allow us to evaluate animal welfare and the effectiveness of 3Rs Refinements designed to improve wellbeing. Judgement bias tasks measure valence; however, task-training may be lengthy and/or require significant time from researchers. Here we develop an automated and self-initiated judgement bias task for rats which capitalises on their natural investigative behaviour. Rats insert their noses into a food trough to start trials. They then hear a tone and learn either to stay for 2 s to receive a food reward or to withdraw promptly to avoid an air-puff. Which contingency applies is signalled by two different tones. Judgement bias is measured by responses to intermediate ambiguous tones. In two experiments we show that rats learn the task in fewer sessions than other automated variants, generalise responses across ambiguous tones as expected, self-initiate 4-5 trials/min, and can be tested repeatedly. Affect manipulations generate main effect trends in the predicted directions, although not localised to ambiguous tones, so further construct validation is required. We also find that tone-reinforcer pairings and reinforcement or non-reinforcement of ambiguous trials can affect responses to ambiguity. This translatable task should facilitate more widespread uptake of judgement bias testing
Recommended from our members
Neural processes mediating contextual influences on human choice behaviour
Contextual influences on choice are ubiquitous in ecological settings. Current evidence suggests that subjective values are normalized with respect to the distribution of potentially available rewards. However, how this context-sensitivity is realised in the brain remains unknown. To address this, here we examine functional magnetic resonance imaging (fMRI) data during performance of a gambling task where blocks comprise values drawn from one of two different, but partially overlapping, reward distributions or contexts. At the beginning of each block (when information about context is provided), hippocampus is activated and this response is enhanced when contextual influence on choice increases. In addition, response to value in ventral tegmental area/substantia nigra (VTA/SN) shows context-sensitivity, an effect enhanced with an increased contextual influence on choice. Finally, greater response in hippocampus at block start is associated with enhanced context sensitivity in VTA/SN. These findings suggest that context-sensitive choice is driven by a brain circuit involving hippocampus and dopaminergic midbrain
Recommended from our members
Dopamine Increases a Value-Independent Gambling Propensity
Although the impact of dopamine on reward learning is well documented, its influence on other aspects of behavior remains the subject of much ongoing work. Dopaminergic drugs are known to increase risk-taking behavior, but the underlying mechanisms for this effect are not clear. We probed dopamine’s role by examining the effect of its precursor L-DOPA on the choices of healthy human participants in an experimental paradigm that allowed particular components of risk to be distinguished. We show that choice behavior depended on a baseline (ie, value-independent) gambling propensity, a gambling preference scaling with the amount/variance, and a value normalization factor. Boosting dopamine levels specifically increased just the value-independent baseline gambling propensity, leaving the other components unaffected. Our results indicate that the influence of dopamine on choice behavior involves a specific modulation of the attractiveness of risky options—a finding with implications for understanding a range of reward-related psychopathologies including addiction
Diazepam actions in the VTA enhance social dominance and mitochondrial function in the nucleus accumbens by activation of dopamine D1 receptors.
Benzodiazepines can ameliorate social disturbances and increase social competition, particularly in high-anxious individuals. However, the neural circuits and mechanisms underlying benzodiazepines' effects in social competition are not understood. Converging evidence points to the mesolimbic system as a potential site of action for at least some benzodiazepine-mediated effects. Furthermore, mitochondrial function in the nucleus accumbens (NAc) has been causally implicated in the link between anxiety and social competitiveness. Here, we show that diazepam facilitates social dominance, ameliorating both the competitive disadvantage and low NAc mitochondrial function displayed by high-anxious rats, and identify the ventral tegmental area (VTA) as a key site of action for direct diazepam effects. We also show that intra-VTA diazepam infusion increases accumbal dopamine and DOPAC, as well as activity of dopamine D1- but not D2-containing cells. In addition, intra-NAc infusion of a D1-, but not D2, receptor agonist facilitates social dominance and mitochondrial respiration. Conversely, intra-VTA diazepam actions on social dominance and NAc mitochondrial respiration are blocked by pharmacological NAc micro-infusion of a mitochondrial complex I inhibitor or an antagonist of D1 receptors. Our data support the view that diazepam disinhibits VTA dopaminergic neurons, leading to the release of dopamine into the NAc where activation of D1-signaling transiently facilitates mitochondrial function, that is, increased respiration and enhanced ATP levels, which ultimately enhances social competitive behavior. Therefore, our findings critically involve the mesolimbic system in the facilitating effects of diazepam on social competition and highlight mitochondrial function as a potential therapeutic target for anxiety-related social dysfunctions
Neural Signatures of Prediction Errors in a Decision-Making Task are Modulated by Action Execution Failures
Decisions must be implemented through actions, and actions are prone to error. As such, when an expected outcome is not obtained, an individual should be sensitive to not only whether the choice itself was suboptimal but also whether the action required to indicate that choice was executed successfully. The intelligent assignment of credit to action execution versus action selection has clear ecological utility for the learner. To explore this, we used a modified version of a classic reinforcement learning task in which feedback indicated whether negative prediction errors were, or were not, associated with execution errors. Using fMRI, we asked if prediction error computations in the human striatum, a key substrate in reinforcement learning and decision making, are modulated when a failure in action execution results in the negative outcome. Participants were more tolerant of non-rewarded outcomes when these resulted from execution errors versus when execution was successful, but reward was withheld. Consistent with this behavior, a model-driven analysis of neural activity revealed an attenuation of the signal associated with negative reward prediction errors in the striatum following execution failures. These results converge with other lines of evidence suggesting that prediction errors in the mesostriatal dopamine system integrate high-level information during the evaluation of instantaneous reward outcomes
- …
