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Abstract. We propose and evaluate a novel approach to the online syn-
thesis of neural controllers for autonomous robots. We combine online
evolution of weights and network topology with neuromodulated learn-
ing. We demonstrate our method through a series of simulation-based ex-
periments in which an e-puck-like robot must perform a dynamic concur-
rent foraging task. In this task, scattered food items periodically change
their nutritive value or become poisonous. Our results show that when
neuromodulated learning is employed, neural controllers are synthesised
faster than by evolution alone. We demonstrate that the online evolu-
tionary process is capable of generating controllers well adapted to the
periodic task changes. An analysis of the evolved networks shows that
they are characterised by specialised modulatory neurons that exclusively
regulate the output neurons.

Keywords: Neural Networks, Online Adaptation, Neuroevolution, Neu-
romodulated Learning, odNEAT

1 Introduction

Evolutionary computation techniques have been widely studied and applied in
the field of robotics as a means to automate the design of robotic systems [1].
In evolutionary robotics (ER), robot controllers are typically based on artificial
neural networks (ANN). The connection weights and sometimes the topology of
the ANN are optimised by an evolutionary algorithm (EA), a process termed as
neuroevolution. Evolutionary synthesis of controllers is usually performed offline
in simulation, which presents a number of limitations. When a suitable neuro-
controller is found, it is deployed on real robots. Since no evolution or adaptation
takes place online, the controllers are fixed solutions that remain static through-
out the robot’s lifetime. If environmental conditions or task parameters become
distinct from those encountered during offline evolution, the evolved controllers
may be incapable of solving the task as they have no means to adapt.

Online evolution is a process of continuous adaptation that potentially gives
robots the capacity to respond to changes in the task or in environmental condi-
tions by modifying their behaviour. An EA is executed on the robots themselves
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as they perform their tasks. This way, robots may be capable of long-term self-
adaptation. In recent years, different approaches to online evolution have been
proposed (see for instance [2–4]). Notwithstanding, in such contributions, online
neuroevolution has been limited to evolving weights in fixed-topology ANNs. In
a recent study [9], we proposed a novel approach called odNEAT. odNEAT is
an online, distributed, and decentralised EA for online evolution in groups of
robots, that evolves both weights and network topology. The network topology
is therefore a product of a continuous evolutionary process.

Online evolution is a form of online adaptation that acts at genotype level.
Controllers produced are static as they do not change their parameters while
they are controlling the robot. While evolution produces phylogenetic adapta-
tion, online learning operates on a much shorter time-scale. Learning acts at
phenotypic level and gives each individual controller the capacity to self-adjust
during task-execution. Several studies indicate that learning can accelerate the
evolution of good solutions, a phenomenon known as the Baldwin effect [5].

Agents controlled by ANNs can learn from experience by dynamically chang-
ing their internal synaptic strengths. This mechanism is inspired by how organ-
isms in nature adapt to cope with dynamic and unstructured environments as a
result of synaptic plasticity [13]. In this paper, we synthesise behavioural control
for autonomous robots based on online evolutionary computation and online
learning. We combine evolution of weights and network topology (odNEAT)
with neuromodulation [12]. Neuromodulation is a form of synaptic modification
involving modulatory neurons that diffuse chemicals at target synapses. Modu-
lation has been suggested as essential for stabilising classical Hebbian plasticity
and memory [15].

We demonstrate our method in a simulated experiment where an e-puck-like
robot [8] must perform a dynamic concurrent foraging task. The robot must
locate and consume scattered food items. When a food item is consumed, a new
item of the same type is randomly placed in the environment. At regular time
intervals, food items change their nutritive value, or become poisonous. Besides
learning to forage, the robot must therefore be able to adapt and change its
foraging policy in order to survive. To the best of our knowledge, the contribution
presented here is the first demonstration of online learning and online evolution
of both the weights and the ANN topology in multirobot systems.

2 Background

In this section, we first discuss evolution of plastic ANNs, with a focus on the
neuromodulation-based model, and we then review odNEAT, which we extended
to incorporate neuromodulated plasticity.

2.1 Artificial Evolution of Neuromodulated Plasticity

Synaptic plasticity is considered a fundamental mechanism behind memory and
learning in biological neural networks [14]. In ANNs, the modification of inter-
nal synaptic connection strengths can be performed according to a generalised
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Hebbian plasticity rule [13]. Synaptic weights are updated based on pre- and
post-synaptic neuron activities as follows:

∆w = η · [Axy +Bx+ Cy +D], (1)

where η is the learning rate, x and y are the activation levels of the pre-synaptic
and post-synaptic neurons. w is the connection weight and A−D are the corre-
lation term, pre-synaptic term, post-synaptic term, and constant weight decay
or increase, respectively. By tuning these parameters, it is possible to evolve dis-
tinct forms of synaptic plasticity. ANN controllers can thus implement learning
and memory by means of recurrent connections, plastic Hebbian connections, or
a combination of the two.

The adaptation capabilities of fixed-topology plastic Hebbian ANNs were
demonstrated in [7]. In a light-switching task, a mobile robot Khepera had to
turn on a light switch and then navigate towards a gray area at the opposite end
of the environment. The evolved plastic Hebbian controllers managed to solve
the task much faster than fixed-weight networks. The plastic controllers also ex-
hibited a larger variety of successful behaviours and robustness to environmental
changes. With a similar setup, it was shown that dynamic environments promote
the genetic expression of plastic connections over static ones [6].

Although the use of plastic ANNs can increase performance, recent studies
indicate that in more complex tasks, both plastic and fixed-weight ANNs have
limited learning capabilities [11–13]. In this context, controlling synaptic plas-
ticity through neuromodulation was presented as a more powerful and biologi-
cally plausible approach [14]. In biological neural networks, neuromodulation has
been suggested as essential for stabilising classical Hebbian plasticity and mem-
ory [15]. In a neuromodulated network, specialised modulatory neurons control
the amount of activity-dependent plasticity between pairs of standard control
neurons. This process is illustrated in Fig. 1.

Fig. 1. Neuromodulated plasticity. A modulatory neuron, Mod 0, transmits a mod-
ulatory signal to Std 3. Modulation affects the learning rate for synaptic plasticity
of weights w1,3 and w2,3. The weights are part of the incoming connections for the
standard control neuron being modulated.
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The advantage of adding neuromodulation is that ANNs become capable of
changing the degree of synaptic plasticity on specific neurons at specific times,
i.e., deciding when learning should start and stop. In addition to its standard
activation value ai, each neuron i also computes its modulatory activation mi

as follows:

ai =
∑

j∈Std

wji · oj , (2)

mi =
∑

j∈Mod

wji · oj , (3)

where wji is the connection weight between pre- and post-synaptic neurons j
and i. oj is the output of a pre-synaptic neuron j. The weight between neurons
j and i, with j ∈ Std, undergoes synaptic modification as follows:

∆wji = tanh(mi/2) · η · [Aojoi +Boj + Coi +D]. (4)

2.2 odNEAT: An Online Evolutionary Algorithm

odNEAT [9] is an online, distributed and decentralised version of NEAT [10].
The NEAT method, one of the most prominent neuroevolution (NE) algorithms,
is capable of optimising both the topology of the network and its connection
weights. NEAT starts with a population of simple networks with no hidden
neurons. Topologies are gradually complexified by adding new neurons and con-
nections through structural mutation. This scheme allows NEAT to find the
right level of complexity for the task while avoiding a priori specification of the
network topology. NEAT has proven successful in diverse control and decision-
making problems, such as double pole balancing, outperforming several methods
that use fixed topologies [11]. The important features of NEAT for the purpose of
this paper are that NEAT evolves both the weights and the topology of an ANN,
while maintaining a healthy diversity of complexifying structures simultaneously.
Complete descriptions of the method are available in [9–11].

odNEAT was originally designed to run across a distributed group of agents
whose objective is to evolve and adapt while operating in the environment. In
this contribution, experiments were performed with a single robot. Therefore,
we only describe odNEAT’s important characteristics when applied to a single
agent. The agent is controlled by an ANN that represents a candidate solution
to the current task. The agent maintains a virtual energy level representing its
task performance. The fitness value is defined as the average of the energy level,
sampled at regular time intervals.

The agent maintains a set of chromosomes (the genetic encoding of candi-
date ANNs) and their respective fitness scores in an internal repository. The
repository stores the current and previous active chromosomes. When the en-
ergy level reaches zero, the current chromosome is considered unfit for the task.
A new chromosome is then created based on NEAT’s genetic operators. First,
two parents are selected, each one via a tournament selection of size 2. Offspring
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is created through crossover of the parents’ genomes and mutation of the new
chromosome. Newly created chromosomes are guaranteed a minimum amount of
time α during which they control the agent, a maturation period.

odNEAT’s genetic encoding was augmented with a new modulatory neuron
type in order to encode neuromodulated plasticity. Each time a new neuron is
added through structural mutation, it is randomly assigned a standard or modu-
latory role. We augmented the genetic encoding with the learning parameters in
Eq. 4. The five parameters are separately encoded and evolved in the range [-1,1]
for A-D, and [-100,100] for η. It is important to note that there is no Lamarckian
inheritance: weight modifications during lifetime are not passed on to offspring.

3 Experimental Setup

The concurrent foraging task used in this study is performed in an arena with
different types of items that can be consumed. To assess how the robot adapts
through time, we applied odNEAT with and without neuromodulation. The
robot loses energy at a constant rate and must learn to find food items. There
are two types of items, red items and pink items. At regular time intervals,
the nutritious food items become poisonous or less nutritive and vice-versa. The
robot is able to sense the type of nearby items but cannot determine the nutritive
value of an item without consuming it. When an item is consumed, a new item
of the same type is placed randomly in the arena. This way, the task remains
dynamic while the sum of the energy value of the food items in the environment
is kept constant.

The motivation for the concurrent foraging task is twofold: (i) since the robot
loses energy at a constant rate, it is required to evolve efficient exploration
behaviours, (ii) when a poisonous item is consumed, the robot must be able to
change its food gathering policy in order to survive.

3.1 Robot Model and Behavioural Control

The simulated robot is modelled after the e-puck, a small (75 mm in diameter)
differential drive robot capable of moving at speeds of up to 13 cm/s [8]. We
have equipped the robot with an omni-directional camera similar to the one
employed by the s-bot robots [16]. The image recorded is processed to calculate
the distance, the red colour component, and the blue colour component of the
closest object in each of the eight 45◦ sectors. The camera has a range of 50 cm
and is subject to noise (simulated by adding a random Gaussian component
within ± 5% of each of the three components’ saturation value). Besides the
camera, the robot has an internal energy level, comfort and discomfort sensors.
The energy sensor allows the robot to perceive its virtual energy level. The
remaining sensors indicate if the robot has consumed a poisonous or nutritious
food item. Note that the comfort sensor does not indicate to the robot the
nutritive value of a consumed food item. That information is reflected by the
energy sensor, which the robot also has to learn to interpret.
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The robot is controlled by an ANN synthesised by odNEAT. The ANN’s
connection weights ∈ [−10, 10]. The input layer consists of 27 neurons: (i) three
for each 45◦ sector, measuring the red and blue colour components, and distance
of the closest object, (ii) one neuron for each of the virtual sensors (energy,
discomfort and comfort). The output layer contains three neurons, one for each
wheel of the robot, and one for the gripper. The gripper enables the robot to
consume the closest food item within a range of 2 cm (if any).

3.2 Experimental Parameters

The environment is a 3 x 3 meter square arena surrounded by blue walls. The
virtual energy level is limited to the range [0,100] energy units. The robot is ca-
pable of surviving for approximately 17 minutes without consuming (nutritious)
food as energy decreases at a rate of 0.1 units/sec. When the energy level reaches
zero, a new controller is generated and assigned maximum energy (100 units).
In the generation of the new controller, two parents are selected from the local
repository. Crossover and mutation are performed with probabilities 0.25 and
0.4, respectively. During mutation, the probability of adding a new neuron is 0.1
while a new connection is added with probability 0.05. Each connection weight
is perturbed with probability 0.02 and a maximum magnitude of 2.5. The local
repository is capable of storing 30 chromosomes. Performance was found to be
robust to moderate changes in these parameters.

In our experimental setup, the nutritive value of the different types of food
change periodically. Periods are composed of four phases of equal duration. At
the beginning of each phase, the energy value of the different types of food items
is set as listed in Table 1. Each experiment lasts for 100 hours of simulated time.

Table 1. The energy value of red and pink food items during the four phases. Values
listed are in energy units.

Phase 1 Phase 2 Phase 3 Phase 4

Red item 5 8 -3 3

Pink item 3 -3 8 5

4 Results and Discussion

4.1 Effects of Neuromodulated Learning

To assess the impact of neuromodulated learning on the robot’s task perfor-
mance, we performed three sets of evolutionary experiments characterised by
distinct phase durations pd: (i) pd = 9 min, (ii) pd = 90 min, and (iii) pd =
900 min. For each configuration, we placed five food items of each type and per-
formed 30 independent runs. We consider those controllers stable that manage
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to survive at least 25 times the minimum survival time, i.e., approximately 7
hours of simulated time.

The results obtained are listed in Table 2. Considering the average number of
evaluations (controllers tested) required for producing stable solutions, odNEAT
combined with neuromodulation required approximately 23.3% to 28.2% fewer
evaluations than odNEAT without neuromodulation. odNEAT alone failed to
achieve stability in two evolutionary runs, one for pd = 9 min and one for
pd = 90 min. In these runs, the long lasting controllers operated for 4.04 and 6.69
hours, respectively. For pd = 9 min and pd = 90 min, differences in the number of
evaluations are not statistically significant (ρ > 0.20 and ρ > 0.15 respectively,
Student’s t-test). For pd = 900 min, the differences are statistically significant
(ρ < 0.01). These results suggest that, as the task-requirements become more
stable, so does the performance of odNEAT with neuromodulation.

Table 2. Summary of the results obtained for each of the three phase durations tested.
The table lists the failure rate (runs without stable controllers), average number of
evaluations required before stable solutions are evolved, and the average maximum age
and gathered energy per period in each experimental setup.

Experimental setup with odNEAT

Phase duration Failure Rate Evaluations Max Age (mins) Gathered Energy

9 mins 3.33% 39.02 3404.98 ± 1668.31 343.43 ± 35.38

90 mins 3.33% 49.28 2886.88 ± 1399.20 3491.03 ± 334.49

900 mins 0% 40.40 3041.81 ± 1446.78 42526.94 ± 6897.61

Experimental setup with neuromodulated odNEAT

Phase duration Failure Rate Evaluations Max Age (mins) Gathered Energy

9 min 0% 29.52 3351.12 ± 1358.34 354.39 ± 46.19

90 min 0% 37.79 2799.34 ± 1650.21 3530.82 ± 336.66

900 min 0% 28.99 3074.33 ± 1283.85 45199.64 ± 6680.48

Table 3. Summary of the number of nodes and connections added to the initial network
topology by each evolutionary method. Results for each configuration are averaged over
30 evolutionary runs.

Evolutionary Method Phase Duration Augmented Connections Augmented Neurons

odNEAT 9 mins 26.43 ± 12.30 9.47 ± 3.95
odNEAT 90 mins 30.26 ± 17.32 10.41 ± 4.65
odNEAT 900 mins 25.17 ± 12.82 9.60 ± 4.31

odNEAT + NeuroMod 9 mins 22.89 ± 14.98 8.48 ± 4.83
odNEAT + NeuroMod 90 mins 29.32 ± 11.31 10.82 ± 3.91
odNEAT + NeuroMod 900 mins 28.91 ± 11.57 10.50 ± 3.57
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Depending on the experimental setup, the most stable controller of each run
operated from approximately 47 hours to 57 hours of simulated time before
the experiment was terminated. This result indicates that the evolutionary pro-
cess is capable of evolving controllers well adapted to the periodic changes in
the nutritive value of the food items. In terms of gathered energy per period,
neuromodulated solutions perform slightly better. ANNs evolved with and with-
out neuromodulation have a similar topological complexity. The initial topology
of stable solutions was augmented with a comparable number of connections
and neurons (see Table 3). Topologies are synthesised faster by odNEAT with
neuromodulation. This result suggests that when neuromodulation is present,
odNEAT performs a more efficient exploitation of a given network topology. In
fixed-weight networks, fine-grained adjustment of connection weights can only be
achieved through mutation. Modulated networks allow for a different expression
of a given topology’s potential, and are advantageous even when task require-
ments do not change for a long time (pd= 900 mins). When modulatory neurons
are present, solutions are synthesised after fewer controller evaluations, probably
due to the modification of internal dynamics by each network.

4.2 Structural Role of Neuromodulation

The results presented above show that neuromodulated learning allows for faster
synthesis of stable controllers. In this section, we analyse the structural role of
neuromodulation on the most stable controllers of each independent run in order
to determine how it affects internal neural dynamics.

Table 4. Summary of the most stable controllers in each independent run. The table
lists the augmented and modulatory neurons, and augmented and modulatory connec-
tions in each network.

Phase Duration Aug. Neurons Mod. Neurons Aug. Connections Mod. Connections

9 mins 9.73 ± 4.88 4.97 ± 2.92 23.93 ± 13.28 6.37 ± 4.39
90 mins 11.97 ± 4.02 6.07 ± 2.99 30.57 ± 10.58 7.93 ± 4.34
900 mins 10.10 ± 5.07 5.03 ± 3.36 25.67 ± 13.34 6.97 ± 4.90

Table 4 shows the average complexity of each stable solution. Approximately
half of the augmented neurons have a modulatory role. Modulatory actions are
localised as each of these neurons typically connects to one or two other neu-
rons. A common topological characteristic between evolved solutions is that the
majority of modulatory connections have output neurons as targets. In fact, the
evolutionary process often leads to the appearance of specialised neurons that
exclusively regulate output neurons as listed in Table 5. Depending on the ex-
perimental setup, 59% to 69% of the modulatory neurons are specialised units.
6% to 9% of the specialised neurons modulate more than one output neuron.
For pd = 9 and pd = 900 mins, differences in the number of specialised neurons
are statistically significant (ρ < 0.05, Student’s t-test). Analysis of experimental
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data shows that there is a higher regulatory activity of outputs for the setups of
pd = 9 mins and pd = 90 mins. In these scenarios, controllers experience more
environmental changes during task-execution. Food gathering policies must be
flexible and change whenever a nutritious item becomes less nutritive or poi-
sonous. With the increase of phase durations, the task becomes less dynamic
and the percentage of specialised neurons decreases. Existing specialised neu-
rons increasingly focuses on movement (left and right wheels) and less on the
gripping and food consumption actions.

Table 5. Summary of the specialised neurons for the best solutions of each evolution-
ary run. The table lists the percentage of modulatory neurons that are specialised in
regulating the output actions, and the percentage of specialised neurons that regulate
each output. LW and RW represent the left and right wheel, respectively.

Phase Duration Specialised Reg. Neurons (%) LW (%) RW (%) Gripper (%)

9 mins 69 ± 20 34 34 38
90 mins 62 ± 24 40 32 35
900 mins 57 ± 26 50 30 29

5 Conclusions and Future Work

In this paper, we have introduced a novel approach to the online synthesis of
behavioural control for autonomous robots. We combined odNEAT and neu-
romodulated learning. While odNEAT evolves online both the weights and the
topology of neural controllers, neuromodulation allows each individual controller
to actively modify its internal dynamics. We demonstrated our method through
a series of simulation-based experiments in which an e-puck-like robot had to
perform a dynamic concurrent foraging task. We showed that odNEAT with
neuromodulation outperforms simple odNEAT by requiring fewer evaluations
to produce stable solutions. Results indicate that neuromodulated learning is
beneficial even when task requirements do not change for a long time.

We showed that the evolutionary process generates controllers well adapted
to the periodic changes in the nutritive value of the food items. Depending on
the experimental setup, the most stable controller in each run operated from
approximately 47 hours to 57 hours of simulated time before the experiment
was terminated. The controllers had thus become resilient to changes in task re-
quirements and they could have operated for longer if they had been given more
time. In order to determine the structural and functional role of neuromodula-
tion, we analysed the evolved topologies of the most stable solutions. Evolved
networks are characterised by specialised neurons dedicated to regulating the
output neurons.

The immediate follow-up work to this study includes the analysis of the
neural activation patterns and weight changes to better understand the neural
dynamics and the decision-making mechanisms underlying the robot’s behaviour.
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