
Continuous-Time Spike-Based
Reinforcement Learning for Working

Memory Tasks

Marios Karamanis, Davide Zambrano, and Sander Bohté(B)

CWI, Machine Learning Group, Amsterdam, The Netherlands
{marios,davide,sbohte}@cwi.nl

Abstract. As the brain purportedly employs on-policy reinforcement
learning compatible with SARSA learning, and most interesting cognitive
tasks require some form of memory while taking place in continuous-time,
recent work has developed plausible reinforcement learning schemes that
are compatible with these requirements. Lacking is a formulation of both
computation and learning in terms of spiking neurons. Such a formulation
creates both a closer mapping to biology, and also expresses such learning
in terms of asynchronous and sparse neural computation. We present
a spiking neural network with memory that learns cognitive tasks in
continuous time. Learning is biologically plausibly implemented using
the AuGMeNT framework, and we show how separate spiking forward
and feedback networks suffice for learning the tasks just as fast the analog
CT-AuGMeNT counterpart, while computing efficiently using very few
spikes: 1–20Hz on average.

Keywords: Reinforcement learning · Working memory
Spiking neurons

1 Introduction

Reinforcement Learning [17] describes how animals can learn to act effectively
given sparse and possibly delayed rewards from their environment. For many
tasks, optimal action selection requires some form of memory: the shortest path
to a parked car relies on remembering where the car was parked, and under-
standing text requires the integration of information over the length of the sen-
tence, if not from earlier paragraphs. For event-based and discrete-time optimiza-
tion problems, Reinforcement Learning has been used to successfully train deep
[11,16] and recurrent neural networks [1]. For working memory tasks, [1] demon-
strated that LSTMs can be trained with the RL Advantage Learning algorithm,
but this type of “off-policy” RL based on error-backpropagation is considered
biologically implausible given the preponderance for “on-policy” RL like SARSA
[12]. How animals can learn such tasks with SARSA-like RL and neural network
models has been the topic of much research in neuroscience, with implications
also in fields like deep learning and neuromorphics.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11140, pp. 250–262, 2018.
https://doi.org/10.1007/978-3-030-01421-6_25

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301647928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01421-6_25&domain=pdf

Spike-Based Reinforcement Learning 251

Recent work [15,20] has suggested how working memory tasks can be learned
in neural network models equipped with memory neurons, where memory neu-
rons learn which stimuli need to be remembered for later use; learning is then
made local and plausible using feedback connections [13]. While standard RL is
formulated in an event-based manner, that is, framed in terms of state-changes,
animals operate in a continuous-time setting and Zambrano et al. showed in
[20] that a continuous-time version of AuGMenT (CT-AuGMenT) can be real-
ized using an action selection mechanism that integrates evidence - drawing
inspiration from the brain’s basal ganglia structures - combined with a separate
feedback network for learning. Missing so far is a model of biologically plausible
RL based on spiking neurons: here we present such a model, and we show how
learning can in fact be based on the (sparse) relative timing of spikes.

We show how the CT-AuGMenT framework can be extended to asynchronous
and sparsely active spiking neural networks. Recent work has shown how spik-
ing neurons can be used to computed convolutional neural networks [5,18] and
compute control [7]; RL versions are lacking. We turn to adaptive spiking neu-
rons [2] and develop two spike-based approaches: the first where spikes carry
approximations of both forward and feedback signals, and the CT-AuGMenT-
derived learning mechanism uses these signal approximations. In the second,
we develop spike-triggered learning by exploiting the fact that the dynamics of
the tasks are much slower than the timescale of timesteps in the simulation,
and CT-AuGMenT weights-updates can be approximated by sparse sampling of
the learning components – spike-triggered learning then uses the asynchronous
nature of adaptive spike-coding where changes in signals elicit more spikes in
the network, and hence higher precision sampling.

We show how these approaches can be applied to two standard RL work-
ing memory tasks (T-Maze and Saccade-anti-Saccade), and find that networks
trained with both spike-based learning methods successfully and efficiently learn
the tasks. When using spike-based learning, we find that very low firing rates
in the network suffice, where the spike-triggered learning approach requires only
slightly higher firing rates, as can be expected since so very learning events take
place. Together, we demonstrate spiking neural networks to learn cognitive tasks,
capable of online-learning using sparse spike-triggered learning.

2 CT-AuGMEnT

In [14,15], AuGMEnT was developed as an artificial neural network (ANN)
implementation of the on-policy SARSA reinforcement learning algorithm for
solving Markov Decision Processes (MDPs) that require learnable working mem-
ory to construct Markov states in the hidden layer of the neural network model.
AuGMEnT implements a biologically plausible local learning rule based on four
factors: attentional feedback, forward activation, the local derivative of the trans-
fer function, and a global neuromodulatory scalar value that signals the temporal
difference error (TD-error) δ (Fig. 1a). This learning rule is local and enables the
learning of XOR-like non-linear function mappings in multi-layer networks [15].

252 M. Karamanis et al.

Sensory
Layer

Association
Layer

Q Layer

Z Layer – Motor Layer

Synaptic
Tag

sTrace

Instantaneous On Off

Working
Memory

Vij
R Vlm

M

Wmk
MWjk

R

disinhibition – WZ
-

Exploration
Extra-current

Most inhibited:
selected action

inhibition – WZ
+

Instantaneous

a b

Sensory
Layer

Association
Layer

Q Layer

Z Layer

On Off

Wmk
MWjk

R Wkm
SMWkj

SR

Feedback
network

Fig. 1. (a) The CT-AuGMEnT architecture. The feedforward layers include memory
units in the association layer (diamonds) to compute Q-values in the Q-layer. The Q-
values are integrated in the action-selecting Z-layer, where the most inhibited action is
selected at any point in time. Feedback from the (sole) selected action induces tags and
traces on the synapses, which in combination with TD-error (δ) determines changes in
synaptic weights. (b) In continuous-time, the feedback activity from the selected action
is carried by a separate feedback network with its own weights (orange network). (Color
figure online)

In [19,20] the CT-AuGMEnT framework was developed as an extension
of AuGMEnT to include a realistic notion of continuous-time, introducing a
dynamic action selection system and demonstrating an explicit feedback network
with layer-wise delays and separately learned feedforward and feedback weights.
The inclusion of an action selection system decouples the typical timescale of
actions from the time resolution of the simulation, allowing for continuous-time
on-policy SARSA learning. The resulting network is depicted in Fig. 1b.

As described in [20], the CT-AuGMENT network comprises of four layers
(Fig. 1a, b): a sensory input layer, a hidden “association” layer, a Q-layer, and
an action layer Z. In the sensory layer, instantaneous units directly represent
the stimulus intensity x(t), and transient “on/off”units represent positive and
negative changes in stimulus intensity, x+(t) (“on”) and x−(t) (“off”):

x+(t) =
1
dt

[x(t) − x(t − dt)]+, x−(t) =
1
dt

[x(t − dt) − x(t)]+, (1)

where [.]+ is a thresholding operation returning 0 for negating inputs. The hidden
layer is comprised of regular units and memory units, where the instantaneous
units i connect to the regular units j via connections vR

ij and the transient units
l connect to the memory units m via connections vM

lm. Activations are then
computed as:

aR
j (t) =

∑
i
vR

ijxi(t) yR
j (t) = f(aR

j (t)) (2)

aM
m (t) = aM

m (t − dt) +
∑

l
vM

lmx′
l(t) yM

m (t) = f(aM
m (t)). (3)

where f(.) denotes the neuron’s transfer function, here the standard sigmoid
transfer function; for brevity of notation, x′

l(t) = [x+(t) x−(t)]. The third layer

Spike-Based Reinforcement Learning 253

is connected to the association layer via connections wM
mk and wR

jk, computing
Q-values for every possible action k in the current state s, qk(t):

qk(t) =
∑

m

wM
mkyM

m (t) +
∑

j

wR
jkyR

j (t). (4)

The Z-layer, modeled after action selection in the basal ganglia [8], imple-
ments an action-selection model based on competition between possible actions
by connecting the Z-layer to the Q-layer with off-center on-surround connectiv-
ity: each q-unit inhibits its corresponding Z-unit and excites all other Z-neurons
(Fig. 1a, top). The input to a Z-layer unit ui is thus:

ui(t) = −w−qi(t) + w+
n∑

j �=i

qj(t), (5)

where we set w−/w+ = ν, with ν the number of possible actions in the task; the
activation of the Z units can then be modeled as a leaky integrator:

ȧi(t) = −ρ(ai(t) − ui(t)), (6)

where ρ is a rate constant that determines how fast equilibrium is reached. The
Z-layer output yi(t) is bounded using the sigmoid activation function:

yi(t) = σ(ai(t)). (7)

The Q-layer thus determines the degree of inhibition in the Z-layer, where, some-
what counterintuitive, the selected action is the one that receives the most inhi-
bition. Exploration is implemented as the addition of an external current to the
explorative action unit in Eq. (5) [20].

Learning: In the CT-AuGMenT network, network plasticity is modulated by
two factors: a global neuromodulatory signal and an attentional feedback signal.
At every time-step, the Z-unit corresponding to the winning action a creates
synaptic tags (equivalent to eligibility traces) by sending feedback activity to
earlier processing levels. Tags in the Q-layer decay and are updated as:

Tagjk(t + dt) = − 1
φ

Tagjk(t) + dt[yj(t)zk(t)], (8)

with zk = 1 for the selected action and zk = 0 for the other actions. The
association units that provided strong input to the winning action a thus also
receive the strongest feedback. Tags - mimicking eligibility trace - on connections
between regular units and instantaneous units are equivalently computed as:

Tagij(t + dt) = − 1
φ

Tagij(t) + dt[xi(t)f ′(aR
j (t))wR

kj], (9)

where f ′(·) denotes the local derivative of the transfer function f , and the feed-
forward connections wR

jk and the feedback connections wR
kj may have different

254 M. Karamanis et al.

(t)

j k

y

0 1 2 3 4 5
S

0

1

2

3

y(
t)

S (t)S (t)

t

t

t

V

V

Fig. 2. ASN-based neural coding. Input spikes (red ticks), induce a smoothed activation
S(t) in the post-synaptic neurons. The neuron emits spikes (blue ticks) when the input
activation exceeds a variable threshold ϑ(t), and a refractory response scaled by the
momentary adaptation is subtracted from the activation at the time of spiking. The
resulting total refractory response Ŝ(t) approximates the rectified activation S(t)+. At
the next target neuron, the emitted spike-train induces an (unweighted) activation y(t);
the transfer function (inset) describes the average relationship between the activation
S(t) and the target activation y(t). (Color figure online)

strength [13]. Synaptic traces between sensory units l and memory cells m enable
the proper learning of working memory:

sTracelm(t + dt) = sTracelm(t) + dt[x′
l(t)]

Taglm(t + dt) = − 1
φTaglm(t) + dt[sTracelm(t)f ′(aM

m (t))wM
km].

(10)

To implement on-policy SARSA temporal difference (TD) learning [17], the
predicted outcome qa(T − 1) is compared to the sum of the reward r(t) and the
discounted action-value qa′(T) of the unit a′ that wins the competition at time
T , resulting in a TD error δ(T) = r + γqa′(T) − qa(T − 1). For continuous-time
TD learning, [20] gives the following TD error:

δ(t) = r(t) +
1
dt

[(
1 − dt

τ

)
qa′(t) − qa(t − dt)

]
, (11)

with learning rate β, weight updates are then defined as:

vij(t + dt) = vij(t) + dt[βδ(t)Tagij(t)],

vlm(t + dt) = vlm(t) + dt[βδ(t)Taglm(t)],

wjk(t + dt) = wja(t) + dt[βδ(t)Tagjk(t)].

(12)

Spike-Based Reinforcement Learning 255

3 Adaptive Spiking Neurons

Adaptive Spiking Neurons (ASNs) [2] are a variant of standard Leaky-Integrate-
and-Fire spiking neurons incorporating a fast multiplicative adaptation mecha-
nism, where the fast adaptation limits the neuron’s asymptotic firing rate. The
ASN includes spike-triggered adaptation and a dynamical threshold that allows
it to match neural responses while maintaining a high coding efficiency.

Illustrated in Fig. 2, adaptive spike-based neural coding is described as a
Spike Response Model (SRM) [6], where the input to a neuron j is computed
as a sum of spike-triggered post-synaptic currents (PSCs) from pre-synaptic
input neurons i. The total PSC, I(t), is computed as a sum over spike-triggered
(normalized) kernels κ(tis − t) each weighted by synaptic efficacies wij :

I(t) =
∑

i

∑

tis

wij κ(ts − t), (13)

where tis denotes the timing of spikes from input neuron i. A normalized expo-
nential filter φ(t) is applied to I(t) to obtain the neuron’s activation S(t):

S(t) = (φ ∗ I)(t). (14)

In the SRM formulation [2], the membrane potential of the neuron is obtained
as the neuron’s activation S(t) from which the total refractory response Ŝ(t)
is subtracted, where Ŝ(t) is computed as the sum of spike-triggered refractory
response kernels η(t) each scaled by the (variable) value of the neuron’s threshold
at the time of spiking (ϑ(tj)); Ŝ(t) then approximates the rectified S(t): S(t)+.

A spike is emitted by neuron j at time t whenever S − Ŝ(t) > θ(t) and the
membrane potential is reset by subtracting a scaled refractory kernel η(t) which
is then added to the total refractory response Ŝ(t). Spike-triggered adaptation is
incorporated into the model by multiplicatively increasing the variable threshold
θ(t) with a decaying kernel γ(t) at the time of spiking, and by controlling the
speed of the firing rate adaptation using the multiplicative parameter mf :

θ(t) = θ0 +
∑

ts

mfθ(ts)γ(ts − t), Ŝ(t) =
∑

ts

θ(ts)η(ts − t). (15)

We set the PSC kernel as equal to the refractory response kernel η(t), and
model this kernel and the threshold kernel γ(t) as decaying exponentials with
corresponding time-constants τη, τγ ; as is the membrane filter φ(t) (τφ):

κ(t) = η(t) = exp
(

ts − t

τη

)
, (16)

γ(t) = exp
(

ts − t

τγ

)
, φ(t) = φ0 exp

(
ts − t

τφ

)
, (17)

where the timing of outgoing spikes is denoted by ts, θ0 is the resting threshold.

256 M. Karamanis et al.

Given a fixed input current I(t) resulting in a fixed activation S(t), the
emitted spike-train from the post-synaptic neuron has an (unweighted) fixed size
impact y(t) on the next target neuron. We characterize the relationship between
activation S(t) and target impact y(t) as the effective ASN transfer-function
(inset); this function has a half-sigmoid like shape and can be either computed
analytically for particular parameter choices (i.e. [18]) or approximated. For the
analog spike-like network in Sect. 4, we approximate the shape of this transfer-
function with the positive rectified tanh() function: tanhP ().

Sensory
Layer

Association
Layer

Q Layer

Z Layer

Instantaneous On Off

a b

Fig. 3. (a) Spiking CT-AuGMent. Indicated by the half-sigmoid graphs are the neurons
that are set to have tanhP () as transfer functions (in the analog rectified network),
which are substituted by ASN neurons in the spiking network versions. Ticks along
network connections indicate which part of the network “spikes”. (b) Spike-based and
spike-triggered learning: spike-based learning uses the analog global δ and local y′(t)
signals and those derived from feedforward spikes, x(t) and feedback spikes, z(t); spike-
triggered learning considers those signals only at spike times ts,n.

4 Spike-Based CT-AuGMenT

Analog Rectified CT-AuGMenT. To convert the CT-AuGMenT network
to a spiking neural network, we replace the analog neurons by ASN models.
The main obstacle here is that ASNs effectively have a rectified half-sigmoid-
like transfer function, as illustrated in Fig. 2. The CT-AuGMenT network uses
sigmoidal transfer-functions for the feedforward stage, and linear neurons for
Q-layer and the feedback network [20]. While for instance [10,13] suggest that
there is some flexibility with regard to the feedback network, we create an analog
network where the neurons in the feedforward Sensory and Association layer use
the tanhP () transfer-function, as well as the feedback network from the Q-layer
projecting to the Association layer (illustrated in Fig. 3a). We train this network
on the tasks to ascertain the feasibility of training spike-based networks with
rectified half-sigmoid-like transfer functions.

Spike-Based Reinforcement Learning 257

Spike-Based Learning. Spiking-AuGMenT incorporates ASNs in the
feedback-learning network to include spike-based learning. Inspecting the learn-
ing rules (8)–(12) we see that four terms are involved in updating a synapse
between a neuron i and j: the feedforward activation xi(t), the TD-error δ(t),
the gradient of the transfer function f ′(ai(t)), and, for the hidden layer neurons
j, the feedback activity from the winning action k, zk(t).

In the spiking-AuGMenT formulation, we use ASNs in both the forward and
the feedback network, also while training the network. The feedforward and feed-
back activations xi(t) and zk(t) are both computed as a sum of spike-triggered
kernels, corresponding to S(t) in the ASN model. Reformulating CT-AuGMeNT,
we denote the spiking neurons of spiking-AuGMenT with s and we use the same
subscripts with the analog CT-AuGMenT. Instantaneous and transient units
emit spikes to the regular and memory spiking neurons, respectively:

aR
φj(ts) =

∑
ts

∑
i
vR

ijxi(ts) ∗ φ(ts), sR
j (ts) = f(aR

φj(ts)), (18)

aM
φm(ts) = aM

m (ts − dt) +
∑

ts

∑
l
vM

lmx′
l(ts) ∗ φ(ts), sM

m (ts) = f(aM
φm(ts)),

(19)
where ts is the time of outgoing spikes, f is the effective transfer function and
φ(t) an exponential decay filter. As before, the Q-layer is fully connected to the
association layer and the values are updated when there are input spikes:

qk(ts) =
∑

ts

(∑

m

wM
mkσM

m (ts) +
∑

j

wR
jkσR

j (ts)
)

. (20)

Equivalently to the analog network, the Z-layer involves the action mechanism
and determines the amount of inhibition an action receives. Note that now the
transfer-function is implicit. The spiking neurons in the feedback network are
defined as:

aZ
φk(ts) =

∑

ts

∑

k

zk(ts) ∗ φ(ts), (21)

sR
kj(ts) = f

(∑

ts

∑

k

wR
kj(ts)a

Z
φk(ts)

)
, sM

kj(ts) = f
(∑

ts

∑

k

wM
kj (ts)a

Z
φk(ts)

)
.

(22)
Equations (8)–(10) and (12) are reformulated accordingly, where we approximate
the local gradient of the transfer-function as the derivative of the positive part of
the tanh-function: tanhP ′ = max(0, 1 − tanh2) - while a rough approximation,
we find this works well in practice. Tags between the association layer and the
Q-layer are then defined as:

Tagjk(t + dt) = − 1
φ

Tagjk(t) + dt[yj(t)aZ
φk(ts))]. (23)

258 M. Karamanis et al.

For tags that are formed between the sensory layer and the association layer:

Tagij(t + dt) = − 1
φ

Tagij(t) + dt[xi(ts)tanhP ′(aR
φj(ts))s

R
kj(ts)]. (24)

sTracelm(t + dt) = sTracelm(t) + dt[x′
l(ts)],

Taglm(t + dt) = − 1
φTaglm(t) + dt[sTracelm(t)tanhP ′(aM

φm(ts))sM
kj(t)].

(25)

In the spike-based learning process the weights are updated again by (12),
where the TD-error δ(t) is still an analog broadcasted signal.

In both tasks the initial weights are positive uniformly distributed, moti-
vated by the rectified-positive nature of the spike-based feedback network (22)
(Fig. 3a).

1

2

3

N

ds

ds

Road sign

Goal

Agent

Corridor

T-junction

a

Empty (1,000ms)

Fixation (2,000ms)

Cue presentation
(1,000ms)

Delay (1,000ms)
Go

Anti L Anti R

Pro L

Time

dt

Pro L
Pro R

Anti R
Anti L

b Antisaccade
Prosaccade

Pro R

Fig. 4. Tasks. (a) T-Maze task, (b) Saccade-anti-Saccade task. See text for explanation.

Spike-Triggered Learning. In the spiking-AuGMenT formulation, each
weight is updated every dt, even though the typical dynamics of the tasks have
substantially longer temporal dynamics - milliseconds versus hundreds of mil-
liseconds: a more sparse sampling approach to learning should suffice. Rather
than fixed interval learning, we here propose to exploit the asynchronous nature
of adaptive spike-coding: we only update the weights when a neuron receives
or emits a spike (illustrated in Fig. 3b). The benefit of this sampling scheme is
that with adaptive neural coding, the spike-rate increases there is a large change
in signal, thus allowing for more and more precise sampling when needed. In
more detail, whenever a neuron emits a spike we update the weights, otherwise
the learning process pauses. Here, we denote with n the number of the current
learning update. Hence, the rule for the update of the weights is:

vij(ts,n+1) = vij(ts,n) + δt[βδ(t)Tagij(ts,n)],

vlm(ts,n+1) = vlm(ts,n) + δt[βδ(t)Taglm(ts,n)],

wjk(ts,n+1) = wjk(ts,n) + δt[βδ(t)Tagjk(ts,n)],

(26)

Spike-Based Reinforcement Learning 259

where δt equals the time between two successive spikes: δt = ts,n+1 − ts,n (note
that here each neuron updates only for its “own” spikes ts,n).

5 Results

We demonstrate the spike-based CT-AuGMenT model of Fig. 1 on two working
memory tasks: the T-Maze task from the machine learning literature [1,14] and
the Saccade/Antisaccade task from the neuroscience literature (both as in [20]).

The T-Maze task is a working memory task where information that is pre-
sented at the start of the maze has to be maintained to make optimal decisions
at the end of the corridor. The agent can choose actions to move in directions
N,E, S,W ; the corridor length N scales the task difficulty. The same details for
corridor representation, reward and time-out conditions as in [20] were applied.
For the simulations, we gave each network at most 10,000 trials to learn the
task. Convergence was determined by checking at 90% optimal choices as in
[20] for each condition. The parameters of the network for the T-Maze task are:
β = 0.02, λ = 0.3, γ = 0.9, ε = 0.025, τ = 0.5 and corridor length N = 10. The
ASNs use fixed values for θ0 = 0.1 and τφ = 2.5 ms. The network is updated at
time increments of dt = 0.01, equivalent to 10 ms. The network consists of 24
neurons: a sensory layer with 9 input neurons (3 instantaneous and 6 transient
units), an Association layer with 7 neurons (4 memory neurons and 3 regular
neurons), and, matching the number of possible actions, both the output and
the action layer have 4 neurons. Weights between the Sensory and Association
and Q-layer are randomly initialized from the uniform distribution U [0, 0.25].

In the Saccade/Antisaccade (SaS) task, the agent has to learn that the
color of the fixation mark determines the strategy. Every trial started with an
empty screen, shown for one second. Then a fixation mark was shown, either
black or white, indicating that a pro- or anti-saccade was required. The model
had to fixate within ten seconds, otherwise the trial was terminated without
reward. If the model fixated for two consecutive seconds, we presented a cue
on the left or the right side of the screen for one second and gave the fixation
reward rfix. This was followed by a memory delay of two seconds during which
only the fixation point was visible. At the end of the memory delay the fixation
mark turned off. To collect the final reward rfin in the pro-saccade condition,
the model had to make an eye-movement to the remembered location of the cue
and to the opposite location on anti-saccade trials. The trial was aborted if the
model failed to respond within eight seconds. The maximum number of trials
the model is allowed to learn the task is set to 35,000. As to the implementation
in [20], we kept the same temporal sequence of the events, and we updated the
network at an increased rate of dt = 0.01 (corresponding to 10 ms per time
step). The chosen parameters for the simulation are: β = 0.01, λ = 0.2, γ = 0.9,
ε = 0.025, τ = 0.5, θ0 = 0.1 and τφ = 2.5 ms. The initialization of the weights is
also uniformly distributed U [0, 0.25]. In this task the network is comprised of 26
neurons, with 12 neurons in the sensory layer (4 instantaneous and 8 transient
units), 8 neurons in the Association layer (4 memory and 4 regular units) and
both output and action layers have 3 neurons.

260 M. Karamanis et al.

Fig. 5. First row: the convergence rate over the average firing rate (Hz) for the
two tasks. In the T-Maze task we used τγ = [50, 150, 450, 1000, 1750] ms and τη =
[150, 450, 1000, 1750, 2500] ms. In the SaS task we have τγ = 50 ms fixed and τη =
[100, 150, 200, 250, 300] ms. Bottom row : The average number of trials for each model
and task for spiking network that match the analog network’s convergence rate.

In both tasks, the spiking neuron time-constants τγ , τη are varied to generate
spiking neurons that have varying asymptotic activation rates. We tested 50
randomly initialized networks for each set of τη and τγ . At the end of each
learning phase we set β = ε = 0 to validate the convergence.

We plot the results for both tasks in Fig. 5, both in terms of convergence
rate of the networks (top row) and the number of trials required for learning
the tasks. We find that both spiking methods, spike-based and spike-triggered
CT-AuGMenT, are able to learn the tasks with convergence rates similar to
that of CT-AuGMenT [19,20] and the analog rectified version (dashed line)
for sufficiently high firing rates. We also compare the average number of trial
needed for those spiking networks where the convergence rate matches the analog
network (bottom row): we find that for all three learning models, the networks
need a similar number of trials to converge. We note also that for both tasks, a
majority of networks still converge even for very low average firing rates (<1 Hz
for the T-Maze, <8 Hz for SaS).

6 Conclusion

We demonstrated how a continuous-time spiking neural network with working
memory can be constructed with plausible spiking neuron models and plausible
learning rules that uses on-policy reinforcement learning to learn hard cognitive
tasks, a first such network to the best of our knowledge. These spiking neural

Spike-Based Reinforcement Learning 261

networks learn the tasks equally fast as their analog counterparts, while needing
very few spikes to both learn and carry out the neural computations. As such, this
work can be considered an important milestone for creating efficient, sparsely-
active and always-on neural networks, with promise for emerging neuromorphic
paradigms like the Intel Loihi architecture [4].

Here, we focused on creating a spiking network to learn and compute Q-
values, while using an analog action-selection system as we chose to focus here
on the learning aspect of the tasks; we see no principled problem to create a spike-
based version of this system. The spike-based transmission of potentially negative
Q-values represents the greatest challenge, as we found that replacing the linear
transfer functions in the Q-layer with half-sigmoid-like rectified functions - or
the spiking equivalent, did not work; this is a challenge we presently tackling.

Compared to LSTM networks [9], the presented architecture lacks gating
mechanisms and recurrence; LSTM-like gating however is notoriously hard to
implement with spiking neurons in continuous time, and we find that for many
tasks these structures however are not necessary. We will consider this in future
research, incorporating for instance subtractive gating [3].

Acknowledgments. DZ is supported by NWO NAI project 656.000.005.

References

1. Bakker, B.: Reinforcement learning with long short-term memory. In: Dietterich,
T., Becker, S., Ghahramani, Z. (eds.) NIPS 14, pp. 1475–1482 (2002)

2. Bohte, S.M.: Efficient spike-coding with multiplicative adaptation in a spike
response model. In: NIPS 25, pp. 1844–1852 (2012)

3. Costa, R., Assael, I.A., Shillingford, B., de Freitas, N., Vogels, T.: Cortical micro-
circuits as gated-recurrent neural networks. In: NIPS 29, pp. 272–283 (2017)

4. Davies, M., Srinivasa, N., Lin, T.H., Chinya, G., Micro, Y.C.I.: Loihi: a neuromor-
phic manycore processor with on-chip learning. ieeexplore.ieee.org (2018)

5. Diehl, P., Neil, D., Binas, J., Cook, M., Liu, S.C., Pfeiffer, M.: Fast-classifying,
high-accuracy spiking deep networks through weight and threshold balancing. In:
IJCNN, pp. 1–8 (2015)

6. Gerstner, W., Kistler, W.: Spiking Neuron Models: Single Neurons, Populations,
Plasticity. Cambridge University Press, Cambridge (2002)

7. Gilra, A., Gerstner, W.: Predicting non-linear dynamics by stable local learning in
a recurrent spiking neural network. Elife 6, e28295 (2017)

8. Gurney, K.N., Prescott, T.J., Redgrave, P.: A computational model of action selec-
tion in the basal ganglia. I. A new functional anatomy. Biol. Cybern. 84, 401–410
(2001)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

10. Lillicrap, T.P., Cownden, D., Tweed, D.B., Akerman, C.J.: Random synaptic feed-
back weights support error backpropagation for deep learning. Nat. Commun. 7,
13276 (2016)

11. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J.: Human-level control
through deep reinforcement learning. Nature 518, 529–533 (2015)

262 M. Karamanis et al.

12. Niv, Y., Daw, N.D., Dayan, P.: Choice values. Nat. Neurosci. 9(8), 987–988 (2006)
13. Roelfsema, P.R., van Ooyen, A.: Attention-gated reinforcement learning of internal

representations for classification. Neural Comput. 17(10), 2176–2214 (2005)
14. Rombouts, J., Bohte, S.M., Roelfsema, P.R.: Neurally plausible reinforcement

learning of working memory tasks. In: NIPS 25, pp. 1880–1888 (2012)
15. Rombouts, J.O., Bohte, S.M., Roelfsema, P.R.: How attention can create synaptic

tags for the learning of working memories in sequential tasks. PLoS Computat.
Biol. 11(3), e1004060 (2015)

16. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L.: Mastering the game of
Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

17. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

18. Zambrano, D., Nusselder, R., Scholte, H.S., Bohte, S.: Efficient computation in
adaptive artificial spiking neural networks. arXiv preprint arXiv:1710.04838 (2017)

19. Zambrano, D., Roelfsema, P., Bohté, S.: Learning continuous-time working memory
tasks with on-policy neural reinforcement learning (2018, in preparation)

20. Zambrano, D., Roelfsema, P.R., Bohte, S.M.: Continuous-time on-policy neural
reinforcement learning of working memory tasks. In: IJCNN 2015, April 2015

http://arxiv.org/abs/1710.04838

	Continuous-Time Spike-Based Reinforcement Learning for Working Memory Tasks
	1 Introduction
	2 CT-AuGMEnT
	3 Adaptive Spiking Neurons
	4 Spike-Based CT-AuGMenT
	5 Results
	6 Conclusion
	References

