6,192 research outputs found
POPULATION AND THE ENVIRONMENT: FRAMEWORKS FOR ANALYSIS
This working paper is one of a series the EPAT/MUCIA Population and Environmental and Natural Resources team is producing. It examines major ways of thinking about the population-environment relationship over the past two centuries. The paper begins with Malthus and reviews developments to the present. Then it examines in detail six current frameworks or models for analyzing population-environment relationships. The six models include Bongaarts', Clark's, and Harrison's attempts to identify the relative impact of population growth on a limited number of forms of environmental degradation. It also examines the more complex Meadows, Meadows, and Randers WORLD3 dynamic model of the global system and International Institute of Applied Systems Analysis (IIASA) population-environment model now being applied to Mauritius. A basic finding of these models is that population growth can have a major impact on the environment. However, the impact is never simple and direct, and human organization always moderates its effect. Further, we cannot expect that slowing population growth will alleviate environmental pressures in the near term. Finally, achieving sustainable development will require a combined attack on population growth, consumption, and a variety of other human patterns of production.Resource /Energy Economics and Policy,
Planetary magnetospheres
A concise overview is presented of our understanding of planetary magnetospheres (and in particular, of that of the Earth), as of the end of 1981. Emphasis is placed on processes of astrophysical interest, e.g., on particle acceleration, collision-free shocks, particle motion, parallel electric fields, magnetic merging, substorms, and large scale plasma flows. The general morphology and topology of the Earth's magnetosphere are discussed, and important results are given about the magnetospheres of Jupiter, Saturn and Mercury, including those derived from the Voyager 1 and 2 missions and those related to Jupiter's satellite Io. About 160 references are cited, including many reviews from which additional details can be obtained
Modelling a Bistable System Strongly Coupled to a Debye Bath: A Quasiclassical Approach Based on the Generalised Langevin Equation
Bistable systems present two degenerate metastable configurations separated
by an energy barrier. Thermal or quantum fluctuations can promote the
transition between the configurations at a rate which depends on the dynamical
properties of the local environment (i.e., a thermal bath). In the case of
classical systems, strong system-bath interaction has been successfully
modelled by the Generalised Langevin Equation (GLE) formalism. Here we show
that the efficient GLE algorithm introduced in Phys. Rev. B 89, 134303 (2014)
can be extended to include some crucial aspects of the quantum fluctuations. In
particular, the expected isotopic effect is observed along with the convergence
of the quantum and classical transition rates in the strong coupling limit.
Saturation of the transition rates at low temperature is also retrieved, in
qualitative, yet not quantitative, agreement with the analytic predictions. The
discrepancies in the tunnelling regime are due to an incorrect sampling close
to the barrier top. The domain of applicability of the quasiclassical GLE is
also discussed.Comment: 21 pages, 5 figures. Presented at the NESC16 conference: Advances in
theory and simulation of non-equilibrium system
Non-equilibrium inelastic electronic transport: Polarization effects and vertex corrections to the self-consistent Born approximation
We study the effect of electron-vibron interactions on the inelastic
transport properties of single-molecule nanojunctions. We use the
non-equilibrium Green's functions technique and a model Hamiltonian to
calculate the effects of second-order diagrams (double-exchange DX and
dressed-phonon DPH diagrams) on the electron-vibration interaction and consider
their effects across the full range of parameter space. The DX diagram,
corresponding to a vertex correction, introduces an effective dynamical
renormalization of the electron-vibron coupling in both the purely inelastic
and the inelastic-resonant features of the IETS. The purely inelastic features
correspond to an applied bias around the energy of a vibron, while the
inelastic-resonant features correspond to peaks (resonance) in the conductance.
The DPH diagram affects only the inelastic resonant features. We also discuss
the circumstances in which the second-order diagrams may be approximated in the
study of more complex model systems.Comment: To be published in PR
Movie of the interplanetary magnetic field
Description of movie representing IMP-1 MAGNETOMETER observations of interplanetary magnetic fiel
Interplanetary magnetic field IMP-1, motion picture of the transverse components
Motion picture report of IMP-1 magnetometer observations of interplanetary magnetic fiel
Integrated assurance assessment of a reconfigurable digital flight control system
The integrated application of reliability, failure effects and system simulator methods in establishing the airworthiness of a flight critical digital flight control system (DFCS) is demonstrated. The emphasis was on the mutual reinforcement of the methods in demonstrating the system safety
Uranus and Neptune: Shape and Rotation
Both Uranus and Neptune are thought to have strong zonal winds with
velocities of several hundred meters per second. These wind velocities,
however, assume solid-body rotation periods based on Voyager 2 measurements of
periodic variations in the planets' radio signals and of fits to the planets'
magnetic fields; 17.24h and 16.11h for Uranus and Neptune, respectively. The
realization that the radio period of Saturn does not represent the planet's
deep interior rotation and the complexity of the magnetic fields of Uranus and
Neptune raise the possibility that the Voyager 2 radio and magnetic periods
might not represent the deep interior rotation periods of the ice giants.
Moreover, if there is deep differential rotation within Uranus and Neptune no
single solid-body rotation period could characterize the bulk rotation of the
planets. We use wind and shape data to investigate the rotation of Uranus and
Neptune. The shapes (flattening) of the ice giants are not measured, but only
inferred from atmospheric wind speeds and radio occultation measurements at a
single latitude. The inferred oblateness values of Uranus and Neptune do not
correspond to bodies rotating with the Voyager rotation periods. Minimization
of wind velocities or dynamic heights of the 1 bar isosurfaces, constrained by
the single occultation radii and gravitational coefficients of the planets,
leads to solid-body rotation periods of ~16.58h for Uranus and ~17.46h for
Neptune. Uranus might be rotating faster and Neptune slower than Voyager
rotation speeds. We derive shapes for the planets based on these rotation
rates. Wind velocities with respect to these rotation periods are essentially
identical on Uranus and Neptune and wind speeds are slower than previously
thought. Alternatively, if we interpret wind measurements in terms of
differential rotation on cylinders there are essentially no residual
atmospheric winds.Comment: Accepted for publication in Icarus, 20 pages, 4 tables, 9 figure
YOUNG STARS IN AN OLD BULGE: A NATURAL OUTCOME OF INTERNAL EVOLUTION IN THE MILKY WAY
The center of our disk galaxy, the Milky Way, is dominated by a boxy/peanut-shaped bulge. Numerous studies of the bulge based on stellar photometry have concluded that the bulge stars are exclusively old. The perceived lack of young stars in the bulge strongly constrains its likely formation scenarios, providing evidence that the bulge is a unique population that formed early and separately from the disk. However, recent studies of individual bulge stars using the microlensing technique have reported that they span a range of ages, emphasizing that the bulge may not be a monolithic structure. In this Letter we demonstrate that the presence of young stars that are located predominantly nearer to the plane is expected for a bulge that has formed from the disk via dynamical instabilities. Using an N-body+ smoothed particle hydrodynamics simulation of a disk galaxy forming out of gas cooling inside a dark matter halo and forming stars, we find a qualitative agreement between our model and the observations of younger metal-rich stars in the bulge. We are also able to partially resolve the apparent contradiction in the literature between results that argue for a purely old bulge population and those that show a population comprised of a range in ages; the key is where to look
Update or Wait: How to Keep Your Data Fresh
In this work, we study how to optimally manage the freshness of information
updates sent from a source node to a destination via a channel. A proper metric
for data freshness at the destination is the age-of-information, or simply age,
which is defined as how old the freshest received update is since the moment
that this update was generated at the source node (e.g., a sensor). A
reasonable update policy is the zero-wait policy, i.e., the source node submits
a fresh update once the previous update is delivered and the channel becomes
free, which achieves the maximum throughput and the minimum delay.
Surprisingly, this zero-wait policy does not always minimize the age. This
counter-intuitive phenomenon motivates us to study how to optimally control
information updates to keep the data fresh and to understand when the zero-wait
policy is optimal. We introduce a general age penalty function to characterize
the level of dissatisfaction on data staleness and formulate the average age
penalty minimization problem as a constrained semi-Markov decision problem
(SMDP) with an uncountable state space. We develop efficient algorithms to find
the optimal update policy among all causal policies, and establish sufficient
and necessary conditions for the optimality of the zero-wait policy. Our
investigation shows that the zero-wait policy is far from the optimum if (i)
the age penalty function grows quickly with respect to the age, (ii) the packet
transmission times over the channel are positively correlated over time, or
(iii) the packet transmission times are highly random (e.g., following a
heavy-tail distribution)
- …
