57 research outputs found

    Thermal Analysis of Potted Litz Wire for High-Power-Density Aerospace Electric Machines

    Get PDF
    Increasing the power density and efficiency of electric machines (motors and generators) is integral to bringing Electrified Aircraft (EA) to commercial realization. To that end an effort to create a High Efficiency Megawatt Motor (HEMM) with a goal of exceeding 98% efficiency and 1.46 MW of power has been undertaken at the NASA Glenn Research Center. Of the motor components the resistive losses in the stator windings are by far the largest contributor (34%) to total motor loss. The challenge is the linear relationship between resistivity and temperature, making machine operation sensitive to temperature increases. In order to accurately predict the thermal behavior of the stator the thermal conductivity of the Litz wire-potting-electrical insulation system must be known. Unfortunately, this multi material system has a wide range of thermal conductivities (0.1 W/m-K 400 W/m-K) and a high anisotropy (axial vs transverse) making the prediction of the transverse thermal conductivity an in turn the hot spot temperatures in the windings is difficult. In order to do this a device that simulates the thermal environment found in the HEMM stator was designed. This device is not unlike the motorettes (little motors) that are described in IEEE standards for testing electrical insulation lifetimes or other electric motor testing. However, because the HEMM motor design includes significant rotor electrical and thermal considerations the term motorette was not deemed appropriate. Instead statorette (or little stator) was adopted as the term for this test device. This paper discussed the design, thermal heat conjugate analysis (thermal model), manufacturing and testing of HEMM's statorette. Analysis of the results is done by thermal resistance network model and micro thermal model and is compared to analytical predictions of thermal conductivity of the insulated and potted Litz wire system

    Finite-element modelling of bending of CFRP laminates: Multiple delaminations

    Get PDF
    This article was published in the journal, Computational Materials Science [© Elsevier]. The definitive version is available at: http://www.sciencedirect.com/science/article/pii/S0927025611000826Carbon fibre-reinforced polymer (CFRP) composites are widely used in aerospace, automotive and construction structures thanks to their high specific strength and stiffness. They can also be used in various products in sports industry. Such products can be exposed to different in-service conditions such as large bending deformation and multiple impacts. In contrast to more traditional homogeneous structural materials like metals and alloys, composites demonstrate multiple modes of damage and fracture due to their heterogeneity and microstructure. Damage evolution affects both their in-service properties and performance that can deteriorate with time. These failure modes need adequate means of analysis and investigation, the major approaches being experimental characterisation and numerical simulations. This research deals with a deformation behaviour and damage in composite laminates due to quasi-static bending. Experimental tests are carried out to characterise the behaviour of a woven CFRP material under large-deflection bending. Two-dimensional finite element (FE) models are implemented in the commercial code Abaqus/Explicit. A series of simulations is performed to study the deformation behaviour and damage in CFRP for cases of high-deflection bending. Single and multiple layers of bilinear cohesive-zone elements are employed to model the onset and progression of inter-ply delamination process. Numerical simulations show that damage initiation and growth are sensitive to a mesh size of cohesive-zone elements. Top and bottom layers of a laminate experience mode-I failure whereas central layers exhibit a mode-II failure behaviour. The obtained results of simulations are in agreement with experimental data

    PCR Improves Diagnostic Yield from Lung Aspiration in Malawian Children with Radiologically Confirmed Pneumonia

    Get PDF
    Accurate data on childhood pneumonia aetiology are essential especially from regions where mortality is high, in order to inform case-management guidelines and the potential of prevention strategies such as bacterial conjugate vaccines. Yield from blood culture is low, but lung aspirate culture provides a higher diagnostic yield. We aimed to determine if diagnostic yield could be increased further by polymerase chain reaction (PCR) detection of bacteria (Streptococcus pneumoniae and Haemophilus influenzae b) and viruses in lung aspirate fluid.A total of 95 children with radiological focal, lobar or segmental consolidation had lung aspirate performed and sent for bacterial culture and for PCR for detection of bacteria, viruses and Pneumocystis jirovecii. In children with a pneumococcal aetiology, pneumococcal bacterial loads were calculated in blood and lung aspirate fluid.Blood culture identified a bacterial pathogen in only 8 patients (8%). With the addition of PCR on lung aspirate samples, causative pathogens (bacterial, viral, pneumocystis) were identified singly or as co-infections in 59 children (62%). The commonest bacterial organism was S.pneumoniae (41%), followed by H. influenzae b (6%), and the commonest virus identified was adenovirus (16%), followed by human bocavirus (HBoV) (4%), either as single or co-infection.In a select group of African children, lung aspirate PCR significantly improves diagnostic yield. Our study confirms a major role of S.pneumoniae and viruses in the aetiology of childhood pneumonia in Africa

    The global burden of cancer attributable to risk factors, 2010-19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. METHODS: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk–outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. FINDINGS: Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01–4·94) deaths and 105 million (95·0–116) DALYs for both sexes combined, representing 44·4% (41·3–48·4) of all cancer deaths and 42·0% (39·1–45·6) of all DALYs. There were 2·88 million (2·60–3·18) risk-attributable cancer deaths in males (50·6% [47·8–54·1] of all male cancer deaths) and 1·58 million (1·36–1·84) risk-attributable cancer deaths in females (36·3% [32·5–41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6–28·4) and DALYs by 16·8% (8·8–25·0), with the greatest percentage increase in metabolic risks (34·7% [27·9–42·8] and 33·3% [25·8–42·0]). INTERPRETATION: The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden

    Removal of Metronidazole Antibiotic from Hospital Wastewater by Biosorbent Prepared from Plantain Wood

    Get PDF
    BACKGROUND AND OBJECTIVE: The overuse of antibiotics in hospitals and the entry of these pollutants into water resources is one of the major challenges to the health of the community and the environment. Removal of antibiotics from hospital wastewater and other aquatic environments is possible through the adsorption process. This study was performed to evaluate antibiotic removal using plantain wood due to being cheapn and natural. METHODS: In this in vitro study, the effect of pH (2, 4, 6, 8, 10 and 12), contact time (5, 10, 20, 40, 60, 80, 100 and 120 minutes), initial metronidazole concentration (10, 50 and 100 mg/L) and biosorbent dose (0.2, 0.4, 0.6, 0.8, 1, 1.2 and 1.4 g) on metronidazole removal rate in synthetic solution were evaluated, and the isothermal kinetic and thermodynamic results of the adsorption process were investigated in this study. Concentration of metronidazole in aqueous solution was measured by Hach DR 5000 UV-Vis Laboratory Spectrophotometer. FINDINGS: Maximum removal of metronidazole (91%) was obtained at pH=6.5, 60 min, initial concentration of 50 mg/l, adsorbent dose of 0.8 g and 25 °C and maximum adsorption capacity (11.38 mg/g) was obtained at a dosage of 0.1 g. In this study, the reaction rate followed the pseudo-second order and adsorption isotherm followed Langmuir equation. The adsorption thermodynamic results showed that the adsorption process is physical in nature and is a spontaneous endothermic reaction. CONCLUSION: The results of the study showed that biosorbent prepared from plantain wood is a natural material and has the ability to remove metronidazole antibiotics from hospital wastewater and other aquatic environments
    • …
    corecore