59 research outputs found

    Tunable graphene-based polarizer

    Get PDF
    It is shown that an attenuated total reflection structure containing a graphene layer can operate as a tunable polarizer of the electromagnetic radiation. The polarization angle is controlled by adjusting the voltage applied to graphene via external gate. The mechanism is based on the resonant coupling of pp-polarized electromagnetic waves to the surface plasmon-polaritons in graphene. The presented calculations show that, at resonance, the reflected wave is almost 100% ss-polarized.Comment: submitted to the Applied Physics Letter

    Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence

    Get PDF
    We study the interaction of electromagnetic (EM) radiation with single-layer graphene and a stack of parallel graphene sheets at arbitrary angles of incidence. It is found that the behavior is qualitatively different for transverse magnetic (or p-polarized) and transverse electric (or s-polarized) waves. In particular, the absorbance of single-layer graphene attains a minimum (maximum) for the p (s)-polarization at the angle of total internal reflection when the light comes from a medium with a higher dielectric constant. In the case of equal dielectric constants of the media above and beneath graphene, for grazing incidence graphene is almost 100% transparent to p-polarized waves and acts as a tunable mirror for the s-polarization. These effects are enhanced for a stack of graphene sheets, so the system can work as a broad band polarizer. It is shown further that a periodic stack of graphene layers has the properties of a one-dimensional photonic crystal, with gaps (or stop bands) at certain frequencies. When an incident EM wave is reflected from this photonic crystal, the tunability of the graphene conductivity renders the possibility of controlling the gaps, and the structure can operate as a tunable spectral-selective mirror.This work was partially supported by FEDER through the COMPTETE Program and by the Portuguese Foundation for Science and Technology (FCT) through Strategic Project PEst-C/FIS/UI0607/2011.EC under Graphene Flagshi

    Scattering of surface plasmon-polaritons in a graphene multilayer photonic crystal with inhomogeneous doping

    Get PDF
    The propagation of a surface plasmon-polariton along a stack of doped graphene sheets is considered. This auxiliary problem is used to discuss: (i) the scattering of such a mode at an interface between the stack and the vacuum; (ii) the scattering at an interface where there is a sudden change of the electronic doping. The formalism is then extended to the barrier problem. In this system rich physics is found for the plasmonic mode, showing: total reflection, total transmission, Fabry-Perot oscillations, and coupling to photonic modes.We acknowledge support from the EC under the Graphene Flagship (Contract No. CNECT-ICT-649953)

    Rogue Waves: From Nonlinear Schrödinger Breather Solutions to Sea-Keeping Test

    Get PDF
    Under suitable assumptions, the nonlinear dynamics of surface gravity waves can be modeled by the one-dimensional nonlinear Schrödinger equation. Besides traveling wave solutions like solitons, this model admits also breather solutions that are now considered as prototypes of rogue waves in ocean. We propose a novel technique to study the interaction between waves and ships/structures during extreme ocean conditions using such breather solutions. In particular, we discuss a state of the art sea-keeping test in a 90-meter long wave tank by creating a Peregrine breather solution hitting a scaled chemical tanker and we discuss its potential devastating effects on the ship

    Superfluidity breakdown of periodic matter waves in quasi one-dimensional annular traps via resonant scattering with moving defects

    Get PDF
    We investigate, both analytically and numerically, the quasisuperfluidity properties of periodic Bose-Einstein condensates (BECs) in a quasi-one-dimensional (1D) ring with optical lattices (OL) of different kinds (linear and nonlinear) and with a moving defect of an infinite mass inside. To study the dynamics of the condensate we used a mean-field approximation describing the condensate by use of the Gross-Pitaevskii equation for the order parameter. We show that the resonant scattering of sound Bloch waves with the defect profoundly affect BEC superfluidity. In particular, a moving defect always leads to the breakdown of superfluidity independently of the value of its velocity. For weak periodic potentials the superfluidity breakdown may occur on a very long time scale (quasisuperfluidity) but the breakdown process can be accelerated by increasing the strength of the OL. Quite remarkably, we find that when the length of the ring is small enough to imply the discreteness of the reciprocal space, it becomes possible to avoid the resonant scattering and to restore quasi-superfluidity.Fundação para a Ciência e a Tecnologia (FCT)Programma di Ricerca Scientifica di Rilevante Interesse Nazionale (Italy

    An escape of vector matter-wave soliton from a parabolic trap

    Get PDF
    We show that a vector matter–wave soliton in a Bose–Einstein condensate (BEC) loaded into an optical lattice can escape from a trap formed by a parabolic potential, resembling a Hawking emission. The particle–antiparticle pair is emulated by a low-amplitude bright–bright soliton in a two-component BEC with effective masses of opposite signs. It is shown that the parabolic potential leads to a spatial separation of BEC components. One component with chemical potential in a semi-infinite gap exerts periodical oscillations, while the other BEC component, with negative effective mass, escapes from the trap. The mechanism of atom transfer from one BEC component to another by spatially periodic linear coupling term is also discussed.Y.V.B. acknowledges the support from Portuguese Foundation for Science and Technology (FCT) through Grant No. UID/FIS/04650/2013. M.A.G.-N. thanks for the financial support of FONDECYT project 11130450.info:eu-repo/semantics/publishedVersio

    Modeling the excitation of graphene plasmons in periodic grids of graphene ribbons: an analytical approach

    Get PDF
    We study electromagnetic scattering and subsequent plasmonic excitations in periodic grids of graphene ribbons. To address this problem, we develop an analytical method to describe the plasmon-assisted absorption of electromagnetic radiation by a periodic structure of graphene ribbons forming a diffraction grating for THz and mid-IR light. The major advantage of this method lies in its ability to accurately describe the excitation of graphene surface plasmons (GSPs) in one-dimensional (1D) graphene gratings without the use of both time-consuming, and computationally-demanding full-wave numerical simulations. We thus provide analytical expressions for the reflectance, transmittance and plasmon-enhanced absorbance spectra, which can be readily evaluated in any personal laptop with little-to-none programming. We also introduce a semi-analytical method to benchmark our previous results and further compare the theoretical data with spectra taken from experiments, to which we observe a very good agreement. These theoretical tools may therefore be applied to design new experiments and cutting-edge nanophotonic devices based on graphene plasmonics.The authors thank N. Asger Mortensen for insightful and valuable comments. PADG acknowledges financial support from Fundação para a Ciência e a Tecnologia (Portugal) from grant No. PD/BI/114376/2016. NMRP and YVB acknowledge financial support from the European Commission through the project “GrapheneDriven Revolutions in ICT and Beyond” (Ref. No. 696656). This work was partially supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Financing UID/FIS/04650/2013. The Center for Nanostructured Graphene is sponsored by the Danish National Research Foundation, Project DNRF103

    Optically-stimulated desorption of 'hot' excimers from pre-irradiated Ar solids

    Full text link
    Electronically-induced desorption from solid Ar pre-irradiated by a low-energy electron beam was investigated by activation spectroscopy methods - photon-stimulated exoelectron emission and photon-stimulated luminescence in combination with spectrally-resolved measurements in the VUV range of the spectrum. Desorption of vibrationally excited argon molecules Ar2^*(v) from the surface of pre-irradiated solid Ar was observed for the first time. It was shown that desorption of 'hot' Ar2^*(v) molecules is caused by recombination of self-trapped holes with electrons released from traps by visible range photons. The possibility of optical stimulation of the phenomenon is evidenced.Comment: The complete version of the paper will be published in Fiz. Nizk. Temp. (Low Temp. Phys.

    Resonant Visible Light Modulation with Graphene

    Get PDF
    Fast modulation and switching of light at visible and near-infrared (vis-NIR) frequencies is of utmost importance for optical signal processing and sensing technologies. No fundamental limit appears to prevent us from designing wavelength-sized devices capable of controlling the light phase and intensity at gigaherts (and even terahertz) speeds in those spectral ranges. However, this problem remains largely unsolved, despite recent advances in the use of quantum wells and phase-change materials for that purpose. Here, we explore an alternative solution based upon the remarkable electro-optical properties of graphene. In particular, we predict unity-order changes in the transmission and absorption of vis-NIR light produced upon electrical doping of graphene sheets coupled to realistically engineered optical cavities. The light intensity is enhanced at the graphene plane, and so is its absorption, which can be switched and modulated via Pauli blocking through varying the level of doping. Specifically, we explore dielectric planar cavities operating under either tunneling or Fabry-Perot resonant transmission conditions, as well as Mie modes in silicon nanospheres and lattice resonances in metal particle arrays. Our simulations reveal absolute variations in transmission exceeding 90% as well as an extinction ratio >15 dB with small insertion losses using feasible material parameters, thus supporting the application of graphene in fast electro-optics at vis-NIR frequencies.Comment: 17 pages, 13 figures, 54 reference
    corecore