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We investigate, both analytically and numerically, the quasi-superfluidity properties of periodic
Bose-Einstein condensates (BECs) in a quasi-one-dimensional (1D) ring with optical lattices (OL) of
different kinds (linear and nonlinear) and with a moving defect of an infinite mass inside. To study
the dynamics of the condensate we used a mean-field approximation describing the condensate by
use of the Gross-Pitaevskii equation for the order parameter. We show that the resonant scattering
of sound Bloch waves with the defect profoundly affect BEC superfluidity. In particular, a moving
defect always leads to the breakdown of superfluidity independently of the value of its velocity.
For weak periodic potentials the superfluidity breakdown may occur on a very long time scale
(quasisuperfluidity) but the breakdown process can be accelerated by increasing the strength of
the OL. Quite remarkably, we find that when the length of the ring is small enough to imply the
discreteness of the reciprocal space, it becomes possible to avoid the resonant scattering and to
restore quasi-superfluidity.

PACS numbers: 03.75.Lm, 03.75.Kk, 05.45.Yv

I. INTRODUCTION

As is well known, superfluidity is the remarkable prop-
erty of quantum fluids to flow without any dissipation [1].
A criterion for this phenomenon to occur, first proposed
by Landau [2], is the existence of a critical velocity be-
low which no excitation can be created in the fluid, obvi-
ously implying frictionless motion for any velocity below
the critical one. Existence of the critical velocity in liq-
uid 4He has been experimentally confirmed, although for
much lower values than the theoretical predictions. This
discrepancy was later explained by Feynman [3] in terms
of vortex ring formation as an alternate mechanism for
dissipation in the fluid.

A similar situation has been found in novel quantum
fluids realized as Bose-Einstein condensate (BEC) gases.
The extreme flexibility of these systems in interactions
and parameters design makes them ideal for superflu-
idity investigations. In particular, the interaction of a
BEC with a moving defect is taken as a test bed for the
gas superfluidity. Thus, a defect moving through a BEC
with a velocity below a critical velocity (Landau critical
velocity coincides in this case with the sound velocity)
is expected to experience no drag force while a nonzero
drag force should appear in the supersonic regime, due
to Cherenkov radiation [4]. The existence of the criti-
cal velocity in BECs has been experimentally observed
in the MIT experiment [5] for lower (undersonic) values
than what was expected, due also in this case to vortex
formation. Recently, the phenomena of sub- and super-
sonic motions of defects in polariton BECs have been
reported [6], [7]. It was shown there both theoretically

and experimentally that the motion of the condensate is
superfluid until the velocity of the defect exceeds some
critical velocity.

Superfluid currents through a set of equally spaced im-
purities (barriers) modeling an optical lattice (OL) have
also been reported [8]. The main feature introduced by
the periodic potential is that the superfluid and sound
waves are Bloch functions and the dispersion relation
differs from the usual dispersion relation of Bogoliubov
phonons for homogeneous condensates [9]. In a 1D set-
ting the BEC superfluidity in OLs can be lost via the en-
ergetic instability as well as through dynamical instabil-
ities or modulational instabilities [10, 11] of Bloch waves
leading to soliton formation. This last instability can
be viewed as the 1D analog of the vortex formation in
multidimensional superfluid settings. Another possibil-
ity for the breakdown of superfluidity is the occurrence
of superfluid-insulator transitions [12] in the limit of very
deep OLs. The breakdown of superfluidity of a trapped
condensate moving in a 1D OL has been experimentally
reported in Ref. [13].

It is also known that the critical velocity may be sen-
sitive both to the dimension and to the geometry of the
trap. In this context persistent currents in annular traps
attract particular attention, having been addressed both
theoretically [14] and experimentally [15]. One may ex-
pect from this that the introduction of a moving defect
in a periodic BEC can manifest profoundly different re-
sponses of the superfluid due to the interplay of peri-
odicity and nonlinearity which could induce (enhance)
resonances between sound waves and the moving de-
fect. Moreover, the superfluid response could depend on
whether the defect is at rest with respect to the OL (e.g.,
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superfluid BEC flow though an OL and a defect both
stationary) or if it is moving with respect to the OL. The
response could depend as well on the shape and strength
of the defect since the appearance of nonlinear defect
modes is also possible [16, 17].

The aim of the present paper is to study superfluid
properties of periodic BECs moving in quasi-1D ring
traps in the presence of OLs of different kinds, e.g., lin-
ear and nonlinear, and with a localized defect moving
with respect to them. We note that persistent BEC cur-
rents in quasi-1D rings are possible both in the presence
of a standard OL (e.g., a linear periodic potential) and
in the presence of a periodic modulation of the scatter-
ing length along the ring (also called nonlinear OL [18]),
as recently discussed in Ref. [19]. In this context we
show, as a result, the occurrence of a dynamical insta-
bility which arises from resonances in the defect-sound
waves dynamics (resonant scattering) and always leading
to the breakdown of BEC superfluidity, independently of
defect velocity. This instability, although of dynamical
type, should not not be confused with the usual dynami-
cal instability reported for periodic BEC systems (e.g.,
modulational instability of Bloch waves) [10]. Let us
mention here that this instability can be also treated as
transitional radiation [20] or as Cherenkov radiation of
Bloch waves [21]-[27]. For weak periodic potentials the
loss of BEC superfluidity via resonant scattering may oc-
cur on a time scale so long that can be considered infinite
for any practical purpose. The superfluidity breakdown,
however, can be clearly detected because it can be ac-
celerated by increasing the strength of the OL. Quite re-
markably, we find that when the size of the ring in which
the BEC is confined is small enough to imply the dis-
creteness of the reciprocal (crystal momentum) space, it
becomes possible to avoid resonances with a proper de-
sign of the system parameters and allows us to achieve
quasi-superfluidity or full superfluidity behavior.

The paper is organized as follows. In Sec. II we present
the model equation and discuss families of current-
carrying states for different settings. In Sec. III we
study the Bogoliubov spectrum of the Bloch sound waves
propagating against periodic BEC current-carrying back-
grounds. In Sec. IV we use perturbation theory to give
a quantitative picture of the sound dynamics induced by
a defect moving in a periodic BEC in a ring and to dis-
cuss the resonant conditions for the scattering between
the defect and sound excitations to occur. Section V
is devoted to the study of the BEC superfluidity in the
case of a periodic quasi-infinite geometry setting in the
presence of a linear or a nonlinear OL. In particular, we
use direct numerical integrations of GPE to show that,
in agreement with our resonant condition analysis, the
BEC superfluidity may always be lost by resonant scat-
tering, although the real breakdown may occur on a very
long time scale. In Sec. VI we address the same prob-
lem for the case of a finite-size ring geometry and show
that when the ring is small enough it becomes possible to
avoid the scattering resonances and to restore superflu-

idity. Finally, in Sec. VII, the main results of the paper
are briefly summarized.

II. MODEL EQUATION

We consider the one-dimensional Gross-Pitaevskii
equation (GPE)

iψt = −ψxx + V (x)ψ + U(x)|ψ|2ψ + Vd(x− vdt)ψ, (1)

with V (x) and U(x) as the periodic linear and nonlinear
potentials, respectively, which account for external op-
tical or magnetic traps (lattices) and for space-varying
interatomic interactions, and with Vd(x−vdt) a localized
linear potential modeling a defect moving with the veloc-
ity vd and perturbing a given superfluid flow. Without
loss of generality, the period of the lattices is chosen to
be π, i.e., V (x + π) = V (x), U(x + π) = U(x). This
scaling implies that the energy is measured in the units
of the recoil energy. We assume that the length of the
ring (annular) trap is L = nπ, where n is an integer, and
focus on the case when n ≫ 1. This geometry implies
cyclic boundary conditions,

ψ(x) = ψ(x+ L). (2)

In particular, we are interested in nonzero current states,
which in the absence of the defect (i.e., when Vd(x −
vdt) ≡ 0), can be represented in the form of the nonlin-
ear Bloch state Ψv0 = e−iµt+iv0xψv0(x) with the mean
superfluid velocity v0 playing the role of the crystal mo-
mentum and with ψv0(x) a complex periodic solution of
the equation (see also Ref.[19])

µψv0 = −ψv0,xx − 2iv0ψv0,x

+
[
v20 + V (x) + U(x)|ψv0 |2

]
ψv0 (3)

with µ denoting the chemical potential. For the sake of
definiteness, below we explore the linear potential V of a
super-Gaussian form

V (x) = V0
∑
m

e−
(x−xm)4

ℓ4 (4)

whose peaks have the characteristic widths ℓ and depths
V0, and are centered in the points xm = πm + xs, with
the shift xs introduced for the sake of convenience.

The nonlinear lattice is modeled by the potential of
the form

U(x) =
κq2

4

sn(q[x− π/4], κ)(3κ sn(q[x− π/4], κ)− 2)

1 + κsn(q[x− π/4], κ)
,(5)

q =
4K(κ)

π
,

where we use the standard notations for the Jacobi el-
liptic function sn and for the elliptic integral K(κ).
Obviously U(x) is parametrized by the elliptic modulus
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FIG. 1: (Color online) (a) Families of the stationary back-
grounds with the velocity v0 = 0 (blue line, 1), v0 = 0.25 (red
line, 2) and v0 = 1 (black line, 3) in the presence of a linear OL
only [the nonlinear potential is homogeneous U(x) = 1]. Ex-
amples of stationary solutions for µ = 3 of Eq. (3) are shown
in panels (b)-(d). Panel (b) marked also by big blue number
1, shows the field distribution corresponding to the bifurca-
tion curve 1 in panel (a). The left vertical axis of panel (b) is
for the field ψ (which is pure real in this case) and the right
vertical axis is for linear potential V . Panel (c) shows the
distribution of the absolute value, real and imaginary parts of
the complex field ψv0 which correspond to a nonzero current
state [bifurcation curve 2 in panel (a)]. Panel (d) is the same
but for bifurcation curve 3 in panel (a). Here the left vertical
axis shows the absolute value and the real part of the field ψ,
the imaginary part of ψ is zero because this distribution cor-
responds to a currentless state. The parameters are V0 = 15,
ℓ = 0.15, xs = 0 [panels (b) and (d)], or xs = π/2 [panel (c)].

κ ∈ [0, 1]. This form of the potential, centered at x = π/4
with κ = 0.25, is the same as the one used in Ref.[19] to
study superfluid BEC ground states in a nonlinear OL.
Notice that while the linear and nonlinear potentials

are taken with period π the complex function ψv0(x) may
have periods L0 = mπ with m an integer. In the follow-
ing, we mainly focus on π-periodic solutions for the case
of linear OL and on 2π-periodic solutions for the case of
nonlinear OL. The reason for choosing these solutions is
because they are both stable for the respective cases (the
π-periodic solutions are always stable for linear OLs while
for nonlinear OLs the 2π-periodic solutions are stable for
large strongly varying densities of condensate, e.g., when
the condensate is in the form of an interacting chain of
droplets, with relatively large values of the chemical po-
tential).
In Fig. 1(a) we present examples of the families of

stationary periodic solutions on the plane (ρ, µ), where

ρ = 1
L

∫ L

0
|Ψ(x)|2dx is the average density of the conden-

sate, as well as, examples of the profiles of the density dis-
tribution in the presence of linear lattice only [Figs. 1(b)–
1(b)(d)]. One can see that the density of the condensate
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FIG. 2: (Color online) (a) Families of the stationary back-
grounds with the velocity v0 = 1 (blue line, 1), v0 = 0.125
(red line, 2) and v0 = 0 (black line, 3) in the presence of only
nonlinear OL [linear OL V (x) ≡ 0]. Examples of stationary
solutions for µ = −2 of Eq. (3) are shown in panels (b)-(d).
Panel (b), marked also by big blue number 1 shows the field
distribution corresponding to the bifurcation curve 1 in panel
(a). The left vertical axis of panel (b) is for the field ψ (which
is pure real in this case) and the right vertical axis is for the
nonlinear potential U . Panel (c) shows the distribution of
the absolute value, real and imaginary parts of the complex
field ψv0 corresponding to the bifurcation curve 2 in panel
(a). Panel (d) is the same but for bifurcation curve 3 in panel
(a). Here the left vertical axis shows the absolute value and
the real part of the field ψ, the imaginary part of ψ is zero.
The nonlinear potential U(x) (5) is centered at x = π/4 with
κ = 0.25 likewise in Ref. [19].

varies significantly; therefore, one can expect that inter-
action with upper branches of the dispersion spectra of
the linear excitations may be important. In Fig. 2 anal-
ogous results are shown for the case when only a nonlin-
ear lattice is present. We consider relatively low currents
ensuring stability of the ground state. It is evident from
Figs. 1 and 2 that for the low currents assumed hereafter,
the bifurcation diagram and the density distribution are
nearly the same in the presence and in the absence of the
current. However, as we show later, the scattering of the
condensate is sensitive to the value of the current.

III. BOGOLIUBOV-DE GENNES SPECTRUM
OF SOUND WAVES

In the following, we are interested in the sound waves
propagating against the background ψv0 and therefore we
look for a solution of Eq.(1) in the form

Ψv0
= e−iµt+iv0x[ψv0(x) + u(x)eiΩt + w̄(x)e−iΩ̄t], (6)

with |u|, |w| ≪ |ψv0 |. At the first order of the perturba-
tive expansion we obtain from the time-independent GP
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equation the following Bogoliubov - de Gennes equations
[28]:

−uxx − 2iv0ux + V1(x)u+ V2(x)w = −Ωu (7a)

−wxx + 2iv0wx + V1(x)w + V̄2(x)u = Ωw, (7b)

from which the dispersion relation of BEC sound waves
can be determined. Here V1, V2 are real and complex
potentials, respectively, given by

V1(x) = v20 + V (x)− µ+ 2U |ψv0 |2, (8)

V2(x) = Uψ2
v0
, (9)

and having, in general, different periods. A negative
imaginary part of Ω = ω − iγ (i.e., a positive γ) implies
the instability of the background ψv0 . The following sim-
ple properties of the spectrum can be also derived. From
Eq. (7) it follows that Ω = 0 is an eigenvalue with eigen-
function (u,w) = (ψv0 ,−ψ̄v0). More generally, we have
that if Ω is an eigenvalue of (7) with eigenvector (u,w),
then −Ω̄ is also an eigenvalue corresponding to the eigen-
vector (w̄, ū). It also follows from (7) that u and w are
Bloch states characterized, according to Floquet (Bloch)
theorem, by the wave vector (crystal momentum) k be-
longing to the first Brillouin zone, which in our case is
k ∈ [−1, 1]. Amplitudes u and w̄ in (6) represent exci-
tation amplitudes of forward- and backward-propagating
Bloch sound waves with wavevectors ±k. To identify the
bands with positive and negative frequency deviations
from the chemical potential we distinguish them by the
sign by the subscript as ω±n(k). The symmetry of the
sound spectrum is then expressed by the identities

ωn(k) = −ω−n(−k), γn(k) = γ−n(−k). (10)

Figure 3 shows the sound wave spectrum Ω(k) for dif-
ferent values of the current velocity v0 of the π−periodic
current state depicted in Fig. 1(b) with constant nonlin-
earity, i.e., for U(x) ≡ 1. It is worth noting the existence
of the threshold velocity vth ≈ 0.6 such that the back-
ground is stable for v0 < vth and unstable for v0 > vth.
This property is quite expected, being related to the fact,
that in the small density limit, the change of the sign of
the effective mass of a quasilinear Bloch state implies the
change of the stability of the mode [10].

IV. RESONANT SCATTERING INDUCED BY
A MOVING DEFECT

A qualitative picture of the resonant scattering be-
tween sound waves and moving defects in a periodic con-
densate in a ring can be obtained by means of pertur-
bation theory. Here we sketch the standard derivation
procedure [20] for the case of the defect with an infinite
mass and show how it can be applied for the simplest case
of spatially uniform condensate. Assume that we have a
linear equation with a right-hand side of the following
structure:

L̂Y = g(x− vt), (11)

w
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FIG. 3: (Color online) The spectrum of the sound waves in
the condensate for v0 = 0 [panel (a)], v0 = 0.33 [panel (b)],
v0 = 0.66 [panel (c)], and v0 = 1 [panel (d)]. The chemical
potential of the ground state is µ = 3. The solid black and
dashed red curves correspond to the real ω (left vertical axis)
and imaginary γ (right vertical axis) parts of Ω.

where L̂ is a linear operator and g is a localized function
moving with the velocity v. To find the solution of the
equation we have to find Greens function as a solution of
the equation

L̂G = δ(x− vt),

where δ is a Dirac δ function. The solution of Eq.(11)
then can be expressed as Y =

∫∞
−∞ g(ξ)G(x− ξ)dξ.

One can seek the Greens function via Laplace trans-
form with respect to time and the expansion over Bloch
functions with respect to space. In this representation,
Eq.(11) will transform into a linear algebraic equation
that can easily be solved. We then need to perform an
inverse Laplace transform and integrate over Bloch func-
tions (taking the integral over k for all of the branches
of the dispersion characteristic and summarizing over all
the branches). It is a well known fact that the stationary
solution does not exist if for any l, there is a resonance
L(ωl = kv, k) = 0 resulting in the poles of the integrand
in the inverse Bloch expansion [L(ω, k) is the image of

the operator L̂ in Laplace-Bloch space and ωl is the l-
th branch of the dispersion characteristics of the Bloch
waves]. The nonstationary part of the solution can be
considered as transitional radiation or as Cherenkov ra-
diation in terms of Bloch functions.

The crucial difference between spatially uniform and
periodical problems stems from the fact that in a latter
system a moving defect can resonantly couple to a Bloch
mode through its higher-order harmonics. It is evident
from the band structure associated with the Bloch waves
that the resonances of this kind always exist for arbitrary
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velocity of a defect. This phenomenon is responsible, for
example, for the deceleration and decay of moving Bragg
solitons [29]. In this paper we argue that this resonance
results in the scattering of BECs in periodical systems
with a moving defect.
To illustrate this on a simple example, we consider a

pointlike defect as a small perturbation of an uniform
BEC in the absence of the linear V (x) ≡ 0 and in the
presence of uniform nonlinearity U(x) ≡ 1. In this case,
by analogy with Eq.(6), we obtain

Ψv0 = e−iµt+iv0x[
√
µ− v20 + φ(x, t)], (12)

with the linearized sound wave equation given by

iφt + φxx + 2iv0φx − (µ− v20) [φ+ φ∗] =

Vd(x− vdt)
√
µ− v20 . (13)

By taking the pointlike defect of the form Vd(x− vdt) =
adδ(x−vdt) we can rewrite the above equation in Fourier
space as

(ω − 2kv0 − k2)F (k, ω)− (µ− v20)×[
F (k, ω) + F̄ (−k,−ω)

]
= adδ(kvd − ω)

√
µ− v20 (14)

with F (k, ω) = (2π)−1
∫
dx

∫
dte−i(kx−ωt)f(x, t) denot-

ing the Fourier transform with respect to space and time.
The solution of Eq.(14) can be found explicitly as

F (k, ω) = −adδ(kvd − ω)
√
µ− v20

k2 − 2kv0 + ω

D(k, ω)
, (15)

with

D(k, ω) = k4 + 2k2(µ− v20)− (ω − 2kv0)
2. (16)

By equating the denominator to zero, i.e.,

D(k, ω) = 0 (17)

one obtains the same sound-wave spectrum. From
Eq.(15) we see that the value F (k, ω) is maximal when
the resonant condition ω = vdk is satisfied simultane-
ously with (17), i.e., when the defect velocity matches
the phase velocity of a sound excitation. For ω ̸= vdk
the effect of the defect potential on the sound waves be-
comes zero.
This result can be extended to quasiuniform conden-

sates with small size spatially extended defects. In this
case, we have that for defect off-resonance velocities, the
right-hand side of Eq. (14) becomes negligibly small (e.g.,
of higher order in the perturbative expansion) due to
the fast oscillations in the Fourier integral reproducing
in this way the Bogoliubov-like spectrum of the unper-
turbed case. On the contrary, in the presence of a reso-
nance, the defect motion gives rise to secularities (linear
growth in time) in the perturbed sound eigenmodes dy-
namics which may eventually lead to the superfluidity
breakdown.

In the case of periodic BECs, however, the resonant
condition ω = vdk must be generalized to include also
higher k modes due to the periodic structure of the sound
wave spectrum. Indeed, one can show that, in this case,
the sound waves are Bloch functions and each Bloch
mode with a given k contains all harmonics with k+n 2π

L0
,

where n is an integer. So a Bloch wave with the quasimo-
mentum k and frequency ω(k) can be resonantly excited
by harmonics with wave vectors k + n 2π

L0
and frequency

ω. This implies a resonant condition of the form

ωl(kres) = vd · (kres + n
2π

L0
), (18)

where ωl is the l-th branch of the spectrum of linear
excitations.

From this simple analysis we draw the following conclu-
sion. For a defect moving inside a periodic BEC trapped
in an infinitely long (or very long) ring there will always
be, due to the continuum (or the almost continuum) na-
ture of the k space, values of k for which the condition
(18) is satisfied. This implies that BEC superfluidity is
expected to be broken for any nonzero defect velocity
(the time scale on which the breakdown occurs, however,
could depend on defect characteristics). On the other
hand, for finite and small rings, the discreteness of the
k space gives rise to the possibility to avoid some (or
all) of the resonances leading to quasisuperfluidity (su-
perfluidity) in the presence of a moving defect. We shall
investigate these possibilities in more detail in the next
sections by means of direct numerical integrations of the
GPE.

V. LONG BEC RING WITH MOVING DEFECT

To investigate the possibility of the superfluidity break-
down via resonant scattering, we shall perform direct nu-
merical integrations of the GPE (1) on a very large ring
(provided that the spectrum of the sound waves is quasi-
continuous, the results obtained for the infinite system
remain valid for these systems too). In particular, in this
section we check predictions of the previous section by
direct comparison of the Fourier spectra of numerically
obtained GPE periodic BEC solutions

S(k̃, t) =

∣∣∣∣∣
∫ L

0

Ψ(x, t)eik̃xdx

∣∣∣∣∣ (19)

with the resonance condition in Eq. (18). In all the fol-
lowing simulations the moving defect is taken of Gaussian
form

Vd(x) = ad exp

(
(x− vdt)

2

ℓ2d

)
. (20)

Results obtained for the case of a pure nonlinear OL
(e.g., in the absence of the linear potential) are reported
in Fig. 4. In the top left and right panels of this figure



6

(a)

(b)

-5 0 5
0

200

400

600

800

1000

1200

-0.5 0 0.5
-1.5

-1

-0.5

0

0.5

1

1.5

1

4

3

2

-0.5 0 0.5
-1.5

-1

-0.5

0

0.5

1

1.5

-4 -2 0 2 4
0

100

200

300

400

500

6

5

S

k k

w
w

S

(d)

(e)

0 500 1000
0

0.2

0.4

0.6

0 500 1000
-1.5

-1

-0.5

0

0.5

1

1.5

t t

<J> <J>

(c) (f)

v=-0.4 v=-0.6

52

51

53

61

62

11

12

21

22

31

32

41

42

k k

FIG. 4: (Color online) The upper row shows Fourier spec-
tra (19) of the condensate order parameter function obtained
from direct numerical simulation of Eq. (1). The spectra
were calculated at time t = 100. Graphical solutions of the
resonance equation (18) are shown in the middle row. For a
graphical visualization of the resonance condition (18) (red
circles) the defect characteristics ω = vdk are indicated by
black lines the in middle panels. The lower row illustrates
the dynamics of the averaged current < J > calculated by
formula (21). All the results are shown for the nonlinear
potential (5) with κ = 0.25., the chemical potential of the
background µ = −2, the average velocity v0 = 0.125, and the
defect velocities vd = −0.4 (left column) and vd = −0.6 (right
column). The defect is described by (20) with the parameters
ad = 0.15, ℓd = 0.8, and the total width of the system is 64π.

we show the GPE Fourier spectrum of the solution at
the fixed time t = 100 for two different values of the de-
fect velocity vd = −0.4 and vd = −0.6, respectively. In
the corresponding left and right middle panels we depict
the lower branches in the Bogoliubov-de Gennes spec-
trum of the sound waves. Resonances in the spectrum
are denoted by red circles (numbered 1-6) in (18), and
for a graphical visualization of the resonance condition
we have reported the defect characteristic lines ω = vdk
in the first Brillouin zone with black lines.
The Fourier modes k̃ (red circles) in the numerical

GPE spectrum which correspond to the same resonant
mode ω(k) in the Bloch sound wave spectrum have been
marked with subindex numbering of the n-th Fourier har-
monics. Note that to each resonant Bloch mode there
are, in principle, an infinite number of equidistant Fourier
harmonics, with the spacing between them equal to the

width of the Brillouin zone, with k̃ connected to the
quasimomentum k by the relation k̃ = k+v0+nK, where
n is an integer and K is the width of the Brillouin zone
(K = 1 for the considered case). The dashed red verti-
cal lines in the middle panels [Figs.4(b) and 4(e)] show
the positions of the resonances extracted from numeri-
cal simulations using the different spectral lines shown in
the corresponding top panels [Figs.4(a) and 4(d)]. From
this we see that there is a perfect agreement between the
resonances predicted by Eq. (18) and the ones obtained
from numerical GPE integrations.

Superfluidity breakdown induced by resonant scatter-
ing with a moving defect can be detected by means of
the averaged current,

⟨J⟩ = 1

L

∫ L

0

Jdx, J =
1

2i
(ψ∗ψx − ψψ∗

x) , (21)

since it is clear that a significant deviation from an uni-
form time behavior of ⟨J⟩ with a drastic drop of the cur-
rent in time, signals a strong perturbation of the density
and a loss of coherence of the condensate.

This is shown in Figs. 4(c) and 4(f) where the time
dependence of ⟨J⟩ is presented for the same values of the
defect velocity of Figs. 4(a) and 4(b) and then 4(d) and
4(e), respectively. In both cases, one can see that at the
early stage the time evolution of the current exhibits a
regular oscillating behavior around its unperturbed value
and, after some time, [t ≈ 900 for Fig. 4(c) and t ≈ 400
for Fig. 4(f)], the current drops down significantly and
begins to behave chaotically [see Fig. 4(f)]. Notice that
for higher defect velocity the breakdown occurs earlier
due to the fact that, in this case, the perturbation exerted
by the defect on the condensate is stronger.

A similar analysis performed for the case of a pure lin-
ear OL (e.g., in the presence of a spatially uniform non-
linearity along the ring) is reported in Fig. 5. The left
column panels of this figure show the spectra obtained
from the numerical modeling of GPE (1) for different ve-
locities of the defect. The Bogoliubov-de Gennes spectra
of the sound waves and the dispersion characteristics of
the defect are shown in the right column panels. The
resonances between the defect and the Bloch modes of
the condensate are marked by red circles 1-5 in the right
column. The Fourier harmonics corresponding to the n-
th resonant Bloch mode are marked in the spectra shown
in the left column by the subindex numbering the har-
monic. The dashed red vertical lines in the right column
show the positions of the resonances extracted from di-
rect numerical simulations using different spectral lines
shown in the left column. One can see that the predicted
and the measured positions of the harmonics are in an
excellent agreement. The discrepancy can be explained
by the width of the corresponding spectral lines.

It is worth mentioning here that a special case is shown
in Figs. 5(c) and 5(d) where we observe peaks that not
well resolved with widened spectral lines. This behavior
stems from the dispersion characteristics of the defect
that is nearly tangential to that of the Bloch waves for
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FIG. 5: (Color online) The left column shows Fourier spectra
(19) of the order parameter function obtained from direct nu-
merical simulations of the GPE (1). The ground state is char-
acterized by chemical potential µ = 3 and velocity v0 = 0.25;
the parameters of the linear potential are V0 = 15, ℓ = 0.15,
and xs = 0. In the right column, a graphical solution of the
resonance equation (18) is shown. For a graphical visualiza-
tion of the resonance condition (18) (red circles) the defect
characteristics ω = vdk are indicated by black lines in the
right column. The velocity of moving defect is vd = 0.8 [pan-
els (a) and (b)], vd = 1.6 [panels (c) and (d)], and vd = −1.6
[panels (e) and (f)]. The spectra shown in panels (a), (c), and
(e) are calculated at t = 50, t = 60, and at t = 100, respec-
tively. The defect is described by (20) with the parameters
ad = 0.15, ℓd = 0.8, the total width of the system is 64π.

the lower branches while the resonances associated with
the higher modes are exponentially weak and, thus, not
visible. We also remark that, as for Fig. 4, the dispersion
of the Bloch waves are calculated for the functions given
by formula (6) and, therefore, the wave vectors k̃ of the
Fourier harmonics of a Bloch mode are connected to the
quasimomentum of the Bloch wave by the relation k̃ =
k + v0 + nK, where n is an integer and K is the width
of the Brillouin zone equal to K = 2 for the considered
case.

Quite interestingly, and in contrast with the previously
considered case of a pure nonlinear OL, the effect of the
resonant scattering on the condensate stability seems to
be negligible. In Fig. 6 the differences between the pure
linear and pure nonlinear OLs cases with respect to the
superfluidity breakdown induced by a moving defect are

(a)

t

(b)

1112

21

k

22

k

t

52

6151
62

53

t

x

t

x

(c) (d)

(e) (f)

t t

x x

FIG. 6: (Color online) The dynamics of the Fourier spectra
(19) for the cases of linear [panel (a)] and nonlinear [panel
(b)] lattices (upper row). In the middle row, the dynamics of
the condensate density is shown in panels (c) and (d) for the
cases of linear and nonlinear lattices, correspondingly. The
bottom row [panels (e) and (f)] shows the dynamics of the
correlation function (22) for the same cases. For panels (a),
(c), and (e) the parameters are the same as for panels (a) and
(b) of Fig. 5; the parameters for panels (b), (d), and (f) are
the same as for panels (d), (e), and (f) of Fig. 4. Circles with
numbers in panels (a) and (b) denote the resonant lines shown
in panel (a) of Fig. 5 and panel (d) of Fig. 4, respectively.

further investigated. The upper row panels shows the
dynamics of the power spectrum obtained from GPE nu-
merical integrations for pure linear (left panel) and pure
nonlinear (right panel). We see that at the early stages of
the evolution the intensity of the resonant spectral lines
oscillates in time. During the oscillations the spectral
lines corresponding to the resonant scattering become
wider due to nonlinear effects and new lines appear in
the spectrum. In the case of pure nonlinear OLs, how-
ever, after a certain time the perturbation begins to grow
and the ground state is destroyed [this occurs at t ≈ 400,
as one can see from Figs. 6(b), 6(d), and 6(f)].

To inspect the superfluidity of the condensate, we also
evaluate, in addition to the condensate density, a corre-
lation function which reads

Γ(ξ, t) =

∣∣∣∣∣ 1L
∫ L

0

ψ(x, t)ψ∗(x− ξ, t)dx

∣∣∣∣∣ . (22)
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The correlation function proves to be a more sensitive
tool for detecting the loss of coherence of the conden-
sate. In the case of a pure nonlinear OL the superfluid-
ity breakdown is evident from Figs. 6(d) and 6(f), where
the dynamics of the BEC density and of the correlation
function are presented, respectively. One can see that,
in this case, all the characteristics indicate the loss of su-
perfluidity. At the same time, for a pure linear optical
lattice, not only does the spectrum or the density of the
condensate remain practically the same, but also the cor-
relation function shows the condensate is in a superfluid
state.
Note that the superfluidity breakdown in the Fourier

spectra corresponds to a transition from a quasidiscrete
spectrum to a quasicontinuum one [cf. Fig. 6(b)]. This
behavior is in contrast to that observed in Figs. 6(c) and
6(e) for the case of pure linear OLs for which, in spite
of the presence of the resonances in the spectrum, the
corresponding dynamics remains regular in time.
The explanation of the noneffectiveness of the reso-

nant scattering in the case of linear OLs can be assigned
to the nonlinear nature of the phenomenon. To this
end, we note that the resonant scattering as discussed
in the previous section is a purely linear effect. On the
other hand the system is intrinsically nonlinear and a
linear resonance can induce a more complicated (non-
linear) dynamics. In the case of the nonlinear OLs the
condensate exists in the form of relatively weakly inter-
acting droplets (for the given chemical potential µ) and
strong depletion of the condensate in the areas between
the droplets enhance the coupling between the defect and
the resonant Bloch waves, making their excitation more
effective. At the same time weak coupling between the
condensate droplets impairs the stability of the conden-
sate. However, in the considered case of the linear lattice,
the depletion of the condensate is relatively weak and, as
a result, this condensate is spatially very stable and can-
not be destroyed via the linear resonant scattering.
We want to emphasize that we do not claim that the

condensates in the nonlinear lattices are always less sta-
ble against the perturbations introduced by moving de-
fects. One can expect that under special circumstances
and for different sets of the parameters, in particular for
the condensate with strongly depleted areas, the coherent
state of the condensate could be destroyed during quite
short time by means of resonant scattering in the case
of pure linear OLs as well. This problem is discussed in
more detail in the next section.

VI. BEC SUPERFLUIDITY IN MESOSCOPIC
SIZE RINGS WITH LINEAR OL

The main aim of the section is twofold. The first aim is
to consider the breakdown of the BEC placed in a linear
OL and the second one is to answer the question ”How
does the discreetness of the sound wave spectrum affect
the dynamics of the condensate perturbed by a moving

defect?” To answer this question, we concentrate on the
particular setting of rings of finite (not very large) sizes
and deep pure linear OLs. Let us note here that we do
not assume that the number of particles in the conden-
sate is low and so our parameters do not contradict the
applicability of the Gross-Pitaevskii equation. The only
thing which is required is that the characteristic width
of the Cherenkov resonance is considerably smaller than
the distance between the harmonics in the spectrum of
the sound waves of the condensate.

The reasons for these choices are the following. For
rings of small size, the set of the eigenmodes in
Bogoliubov-de Gennes spectrum can be very discrete due
to discrete nature of the k space, k = 2πn

L with n an in-
teger. In this case, one can expect that a mode can be
resonantly excited only if the synchronism between defect
and sound waves is exactly fulfilled for the allowed values
of k, e.g., one can use the discreteness in the spectrum
to manage the resonances. This can be done by prop-
erly adjusting the defect velocity to miss (or to match)
a resonance, leading to the destruction (or preservation)
of the BEC superfluidity. This idea is of general validity,
e.g., valid for linear and nonlinear OLs.

According to our discussion, the destruction of the con-
densate for typical situations requires that the intensity
of the resonant harmonic grows beyond a certain thresh-
old for the nonlinearity to become important. This sit-
uation can be realized more easier in the presence of a
very deep OL when the condensate is fragmented in an
array of weakly interacting droplets and the efficiency
of the excitation of high order modes is enhanced. An-
other factor making it easier to observe the destruction
of the coherent state of the condensate in a deep OL is
that the superfluid property of the whole array in this
case is granted by the coherence kept by the condensate
in the weakly overlapping regions linking the adjacent
droplets. These links, however, are weak, which means
that the stability of coherence between the neighboring
droplets is impaired. In the following we shall investigate
this on the specific example of a condensate in a ring of
length L = 8π resting with respect to a pure linear OL
of strength V0 = 100.

A typical spectrum of the sound wave excitation for
a ring of length L = 8π is presented in Fig. 7 (verti-
cal black lines denote the allowed discrete values of k
in this case). Using the resonant condition, we can find
that the mode with k = 0.5 in the sound wave spec-
trum [see Fig. 7(a)] can be excited if the velocity of the
obstacle is vd = −0.334. If the velocity of the obstacle
deviates from this value, then the mode becomes detuned
from the resonance. This can be seen more clearly from
Fig. 7(b), where the resonances for the obstacles moving
with the resonant velocities vd = −0.334 and vd = −0.35
are shown on enlarged scales.

In Fig. 8 we show the temporal dependence of the in-
tensity of the Fourier harmonics S(k̃) (15) at k = 0.5 for
different heights of the potential modeling a moving de-
fect in the case of resonant [Figure 8(a)] and off-resonant
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FIG. 7: (Color online) The resonance condition for the ve-
locities v = −0.334 (solid red lines) and vd = −0.35 (dashed
black lines). Panel (a) shows the whole lowest branch of the
dispersion characteristics; panel (b) shows a close-up of the
resonance. Vertical dotted lines show the allowed values of k
for the trap length L = 8π. The parameters are V0 = 100,
w = 0.15, µ = 5, v0 = 0.

[Figure 8(b)] velocity. Figure 8(a) shows that for the reso-
nant velocity vd = −0.334 the dynamics is quasiperiodic
and the amplitude of the oscillations does not depend
significantly on the strength of the scattering potential.
However, the period of the oscillations depends on the
strength of the potential significantly. Let us note here
that assuming that vd = −0.334 provides nearly exact
synchronism we should expect that in a linear regime the
intensity of the resonant harmonic should grow quadrat-
ically in time. It can be checked that for the velocity
vd = −0.334 the period becomes Tl ≈ 6000 (at exact
resonance the period becomes infinite). From numerical
simulations performed for vd = −0.334 we can see that
the period of the oscillations begins to differ markedly
from the one predicted by the linear theory. From this
we conclude that the nature of the oscillations in the case
of the resonant excitation must be strongly nonlinear.

In the case of off-resonant velocity vd = −0.35 the am-
plitude of the Fourier harmonics oscillate in time; how-
ever, the amplitude of the oscillations depends on the
strength of the potential much more profoundly than in
the case of vd = −0.334; see Fig. 8(b). We also observe
that the period of the oscillations slightly depends on
their amplitude but if the height of the scattering poten-
tial decreases, then the period of the oscillations reaches
a constant value which can easily be found from the lin-
ear theory and reads Tl = max 2πL

|ωrL−2πvdm| , where ωr is

the resonant frequency of the mode and m is an integer.

For the chosen parameters L = 8π and ωr ≈ 0.5 the
period of linear oscillations is Tl = 251.3 obtained for
m = 6. This means that the oscillations with the longest
period are excited by the sixth harmonics of the driving
force (produced by a moving defect). From our numerical
simulations we obtain the period of the oscillation T =
245.7 for ad = 0.5 and T = 250.5 for ad = 0.4. This shows
that for smaller amplitudes of the excited harmonics the
period of the oscillation tends to its linear value Tl.

Similarly to the pure linear OL case investigated in the
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FIG. 8: (Color online) Panel (a) shows temporal dynamics of

the S(k̃) (in arbitrary units) with k̃ = 0.5 when the defect is
moving at the velocity v = −0.334 and the resonant condition
is held for the allowed value of k (for k = 0.5). The black line
marked as 1 is for the case when ad = 0.4, and the red and
blue lines marked as 2 and 3 are for ad = 0.5 and ad = 0.6
correspondingly. Panel (b) shows the same but for the defect
moving at vd = −0.35. The width of the moving defect is
ℓd = 0.125. The other parameters are the same as in Fig. 7.

previous section, it is difficult to detect any superfluidity
breakdown in terms of the evolutions of Fourier spectrum
or condensate density distribution. On the other hand,
as we also noted before, the correlation function is a more
accurate tool to measure the coherence of the condensate.
For a periodic BEC in the ring to be in superfluid state
the correlation function must be periodic with the same
periodicity of the OL and behave regularly in time (it
should not grow or decay). However, when the conden-
sate becomes strongly perturbed by the defect motion,
e.g., when coherence and superfluidity in linking regions
between droplets are destroyed, the correlation function
cannot be periodic with the period of the OL (period ex-
tend to the whole ring length L) and for ξ greater than
the OL period the amplitude of the correlation function
will decrease significantly.

This is exactly what we obtain for the correlation func-
tion from GPE numerical integrations [see Figs. 9(a)-
9(c)] for the resonant and nonresonant cases. In par-
ticular, in Fig.9(a) the temporal dependence of the cor-
relation function at ξ = 6.4 is depicted. One can see that
while for the resonant velocity [see blue line also marked
as (c) in the panel] the correlation function does a few
oscillations and then decays to lower values, the red line
corresponding to the off-resonant case [also marked as (b)
in the panel] remains approximately constant. Behavior
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of the correlation function Γ(t, ξ) is shown in Figs. 9(c)
and 9(b) for the resonant and off-resonant cases, respec-
tively. From Fig. 9(c) one can also clearly see the loss
of periodicity and the decay of the correlation function
at t ≈ 5000 signaling the superfluidity breakdown of the
condensate.
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FIG. 9: (Color online) Panel (a) shows temporal dynamics of
the correlation function (22) at ξ = 6.4, the blue line marked
as (c) is for vd = −0.334 and the red line marked as (b) is
for vd = −0.35. Panels (b) and (c) shows temporal evolutions
of correlation function Γ for vd = −0.35 and vd = −0.334
correspondingly. Panel (d) shows the dynamics of the density
of the condensate for vd = −0.334. The height of the potential
modeling the defect is ad = 0.5. The other parameters are the
same as in Fig. 8.

Let us now describe in more detail how the destruction
of the superfluid state occurs in this case. We notice that
even if the condensate is strongly perturbed by a defect
and is no longer in a coherent ground state the distribu-
tion of the density of the condensate does not necessar-
ily undergo drastic changes as in the case of nonlinear
lattices. Due to the repulsive nonlinear interaction the
density will be more or less evenly distributed outside the
repelling areas of the external linear potential (in these
areas the condensate will be depleted). However, the co-
herence of the weakly coupled neighboring droplets can
be destroyed by the moving defect.

From these results we conclude that for the consid-
ered system the destruction of the superfluid state occurs
when the defect velocity can match the resonance condi-
tion between the moving defect and an eigenmode. It is
also worth noting that this scenario of the breaking of the
coherent state of the condensate differs very much from
the scenario considered in the previous section for the
nonlinear lattice for which the superfluidity breakdown
can be detected in terms of BEC density as well. From
Fig. 9(d), indeed, we see that for the resonant velocity

vd = −0.334 the density is practically uniform in time
and still resembles the initial density for t > 5000 when
the phase correlation starts to disappear.

In the conclusion of this section we would like to men-
tion that, as the strength of the OL is decreased, the su-
perfluidity will be lost on very long time scales (it could
be longer than the lifetime of the condensate) and the
phenomenon becomes not detectable. The case of very
deep linear OLs, however, is certainly experimentally ac-
cessible and we hope that our predictions about this in-
teresting phenomenon could be be confirmed in the fu-
ture.

Finally, an interesting question to pose is if the above
resonant scattering mechanism for the BEC superfluidity
breakdown could be effective also in a three-dimensional
(3D) setting. In this respect we remark that the pres-
ence of competitive mechanisms typical of the 3D case,
like collapse, delocalizing thresholds, existence of vor-
tices, etc., makes it impossible to extrapolate our results
to the 3D case and to provide an answer to the above
question; additional extensive work, beyond the scope of
the present paper, would be required.

VII. CONCLUSIONS

In this paper we performed analytical and numerical
investigations of the quasisuperfluidity properties of pe-
riodic BEC in quasi-1D rings with linear and nonlinear
OLs and in the presence of a moving defect. We have
shown that the resonant scattering of sound Bloch waves
with the defect profoundly affect the BEC superfluidity
and in spite of the presence of a spectrum of the exci-
tations of Bogoliubov type, a moving defect can lead to
the breakdown of BEC superfluidity, independently of
the value of the defect velocity.

In particular, we have shown the existence of an insta-
bility which arises from the resonance in the defect-sound
waves dynamics (resonant scattering) which becomes evi-
dent in topological geometries. This instability, although
of dynamical type, differs from the usual dynamical (e.g.,
modulational) instability of periodic BEC systems be-
cause it does not lead to the creation of solitons. We
also demonstrated that for weak periodic potentials the
superfluidity breakdown may occur on a long time scale
(quasisuperfluidity) and the breakdown process can be
accelerated by increasing the strength of the OL. Finally,
we have shown that when the size of the ring becomes
small enough to imply the discreteness of the recipro-
cal space, it is possible to avoid the resonant scattering
and to restore quasisuperfluidity or superfluidity behav-
ior. We remark that the observed resonances open a way
to measure the spectral properties of the sound waves in
BECs by varying the velocity of a probing defect and an-
alyzing the respective scattering data. For this the study
of the correlation function of the condensate is a more
effective tool (than the density) to detect the loss of the
phase coherence.
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The obtained results for pure linear and pure nonlin-
ear OLs open a new scenario for the BEC superfluidity
breakdown in topological quasi-1D settings in the pres-
ence of a moving defect. We also remark that the devel-
oped theory can be directly applied to the polariton BEC
in periodical annular 1D semiconductor microcavities.
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