33 research outputs found

    Mineral content of bee pollen from Serbia

    Get PDF
    In this study we analysed mineral composition of bee pollen of different plant origin collected across Serbia using inductively coupled plasma - optical emission spectrometry. The most abundant elements were potassium, calcium, and magnesium. The samples were also exceptionally rich in iron and zinc, which are very important as nutrients. Judging by our findings, mineral composition of bee pollen much more depends on the type of pollen-producing plant than on its geographical origin

    A weak group inverse for rectangular matrices

    Full text link
    [EN] In this paper, we extend the notion of weak group inverse to rectangular matrices (called WweightedWGinverse) by using the weighted core EP inverse recently investigated. This new generalized inverse also generalizes the well-known weighted group inverse given by Cline and Greville. In addition, we give several representations of the W-weighted WG inverse, and derive some characterizations and properties.First author was partially supported by UNRC (Grant PPI 18/C472) and CONICET (Grant PIP 112-201501-00433CO). Third author was partially supported by Ministerio de Economia, Industria y Competitividad of Spain (Grants DGI MTM2013-43678-P and Red de Excelencia MTM2017-90682-REDT).Ferreyra, DE.; Orquera, V.; Thome, N. (2019). A weak group inverse for rectangular matrices. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 113(4):3727-3740. https://doi.org/10.1007/s13398-019-00674-9S372737401134Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Springer, New York (2003)Baksalary, O.M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58, 681–697 (2010)Baksalary, O.M., Trenkler, G.: On a generalized core inverse. Appl. Math. Comput. 236, 450–457 (2014)Bajodah, A.H.: Servo-constraint generalized inverse dynamics for robot manipulator control design. Int. J. Robot. Autom. 25, (2010). https://doi.org/10.2316/Journal.206.2016.1.206-3291Campbell, S.L., Meyer Jr., C.D.: Generalized Inverses of Linear transformations. SIAM, Philadelphia (2009)Cline, R.E., Greville, T.N.E.: A Drazin inverse for rectangular matrices. Linear Algebra Appl. 29, 53–62 (1980)Dajić, A., Koliha, J.J.: The weighted g-Drazin inverse for operators. J. Aust. Math. Soc. 2, 163–181 (2007)Doty, K.L., Melchiorri, C., Bonivento, C.: A theory of generalized inverses applied to robotics. Int. J. Rob. Res. 12, 1–19 (1993)Drazin, M.P.: Pseudo-inverses in associate rings and semirings. Am. Math. Mon. 65, 506–514 (1958)Ferreyra, D.E., Levis, F.E., Thome, N.: Revisiting of the core EP inverse and its extension to rectangular matrices. Quaest. Math. 41, 265–281 (2018)Ferreyra, D.E., Levis, F.E., Thome, N.: Maximal classes of matrices determining generalized inverses. Appl. Math. Comput. 333, 42–52 (2018)Gigola, S., Lebtahi, L., Thome, N.: The inverse eigenvalue problem for a Hermitian reflexive matrix and the optimization problem. J. Comput. Appl. Math. 291, 449–457 (2016)Hartwig, R.E.: The weighted * ∗ -core-nilpotent decomposition. Linear Algebra Appl. 211, 101–111 (1994)Kirkland, S.J., Neumann, M.: Group inverses of M-matrices and their applications. Chapman and Hall/CRC, London (2013)Malik, S., Thome, N.: On a new generalized inverse for matrices of an arbitrary index. Appl. Math. Comput. 226, 575–580 (2014)Male sˇ{{\check{\rm s}}} s ˇ ević, B., Obradović, R., Banjac, B., Jovović, I., Makragić, M.: Application of polynomial texture mapping in process of digitalization of cultural heritage. arXiv:1312.6935 (2013). Accessed 14 June 2018Manjunatha Prasad, K., Mohana, K.S.: Core EP inverse. Linear Multilinear Algebra 62, 792–802 (2014)Mehdipour, M., Salemi, A.: On a new generalized inverse of matrices. Linear Multilinear Algebra 66, 1046–1053 (2018)Meng, L.S.: The DMP inverse for rectangular matrices. Filomat 31, 6015–6019 (2017)Mosić, D.: The CMP inverse for rectangular matrices. Aequaetiones Math. 92, 649–659 (2018)Penrose, R.: A generalized inverse for matrices. Proc. Cambrid. Philos. Soc. 51, 406–413 (1955)Soleimani, F., Stanimirović, P.S., Soleymani, F.: Some matrix iterations for computing generalized inverses and balancing chemical equations. Algorithms 8, 982–998 (2015)Xiao, G.Z., Shen, B.Z., Wu, C.K., Wong, C.S.: Some spectral techniques in coding theory. Discrete Math. 87, 181–186 (1991)Wang, H.: Core-EP decomposition and its applications. Linear Algebra Appl. 508, 289–300 (2016)Wang, H., Chen, J.: Weak group inverse. Open Math. 16, 1218–1232 (2018)Wei, Y.: A characterization for the WW W -weighted Drazin inverse and a Crammer rule for the WW W -weighted Drazin inverse solution. Appl. Math. Comput. 125, 303–310 (2002

    Centralizer's applications to the (b, c)-inverses in rings

    Full text link
    [EN] We give several conditions in order that the absorption law for one sided (b,c)-inverses in rings holds. Also, by using centralizers, we obtain the absorption law for the (b,c)-inverse and the reverse order law of the (b,c)-inverse in rings. As applications, we obtain the related results for the inverse along an element, Moore-Penrose inverse, Drazin inverse, group inverse and core inverse.This research is supported by the National Natural Science Foundation of China (no. 11771076 and no. 11871301). The first author is grateful to China Scholarship Council for giving him a scholarship for his further study in Universitat Politecnica de Valencia, Spain.Xu, S.; Chen, J.; Benítez López, J.; Wang, D. (2019). Centralizer's applications to the (b, c)-inverses in rings. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. 113(3):1739-1746. https://doi.org/10.1007/s13398-018-0574-0S173917461133Baksalary, O.M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58(6), 681–697 (2010)Benítez, J., Boasso, E.: The inverse along an element in rings with an involution, Banach algebras and CC^* C ∗ -algebras. Linear Multilinear Algebra 65(2), 284–299 (2017)Benítez, J., Boasso, E., Jin, H.W.: On one-sided (B,C)(B, C) ( B , C ) -inverses of arbitrary matrices. Electron. J. Linear Algebra 32, 391–422 (2017)Boasso, E., Kantún-Montiel, G.: The (b,c)(b, c) ( b , c ) -inverses in rings and in the Banach context. Mediterr. J. Math. 14, 112 (2017)Chen, Q.G., Wang, D.G.: A class of coquasitriangular Hopf group algebras. Comm. Algebra 44(1), 310–335 (2016)Chen, J.L., Ke, Y.Y., Mosić, D.: The reverse order law of the (b,c)(b, c) ( b , c ) -inverse in semigroups. Acta Math. Hung. 151(1), 181–198 (2017)Deng, C.Y.: Reverse order law for the group inverses. J. Math. Anal. Appl. 382(2), 663–671 (2011)Drazin, M.P.: Pseudo-inverses in associative rings and semigroups. Am. Math. Mon. 65, 506–514 (1958)Drazin, M.P.: A class of outer generalized inverses. Linear Algebra Appl. 436, 1909–1923 (2012)Drazin, M.P.: Left and right generalized inverses. Linear Algebra Appl. 510, 64–78 (2016)Jin, H.W., Benítez, J.: The absorption laws for the generalized inverses in rings. Electron. J. Linear Algebra 30, 827–842 (2015)Johnson, B.E.: An introduction to the theory of centralizers. Proc. Lond. Math. Soc. 14, 299–320 (1964)Ke, Y.Y., Cvetković-Ilić, D.S., Chen, J.L., Višnjić, J.: New results on (b,c)(b, c) ( b , c ) -inverses. Linear Multilinear Algebra 66(3), 447–458 (2018)Ke Y.Y., Višnjić J., Chen J.L.: One sided (b,c)(b,c) ( b , c ) -inverse in rings (2016). arXiv:1607.06230v1Liu, X.J., Jin, H.W., Cvetković-Ilić, D.S.: The absorption laws for the generalized inverses. Appl. Math. Comput. 219, 2053–2059 (2012)Mary, X.: On generalized inverse and Green’s relations. Linear Algebra Appl. 434, 1836–1844 (2011)Mary, X., Patrício, P.: Generalized inverses modulo H\cal{H} H in semigroups and rings. Linear Multilinear Algebra 61(8), 1130–1135 (2013)Mosić, D., Cvetković-Ilić, D.S.: Reverse order law for the Moore-Penrose inverse in CC^* C ∗ -algebras. Electron. J. Linear Algebra 22, 92–111 (2011)Rakić, D.S.: A note on Rao and Mitra’s constrained inverse and Drazin’s (b,c)(b, c) ( b , c ) -inverse. Linear Algebra Appl. 523, 102–108 (2017)Rakić, D.S., Dinčić, N.Č., Djordjević, D.S.: Group, Moore–Penrose, core and dual core inverse in rings with involution. Linear Algebra Appl. 463, 115–133 (2014)Wang, L., Castro-González, N., Chen, J.L.: Characterizations of outer generalized inverses. Can. Math. Bull. 60(4), 861–871 (2017)Wei, Y.M.: A characterization and representation of the generalized inverse AT,S(2)A^{(2)}_{T, S} A T , S ( 2 ) and its applications. Linear Algebra Appl. 280, 87–96 (1998)Xu, S.Z., Benítez, J.: Existence criteria and expressions of the (b,c)(b, c) ( b , c ) -inverse in rings and its applications. Mediterr. J. Math. 15, 14 (2018)Zhu, H.H., Chen, J.L., Patrício, P.: Further results on the inverse along an element in semigroups and rings. Linear Multilinear Algebra 64(3), 393–403 (2016)Zhu, H.H., Chen, J.L., Patrício, P.: Reverse order law for the inverse along an element. Linear Multilinear Algebra 65, 166–177 (2017)Zhu, H.H., Chen, J.L., Patrício, P., Mary, X.: Centralizer’s applications to the inverse along an element. Appl. Math. Comput. 315, 27–33 (2017)Zhu, H.H., Zhang, X.X., Chen, J.L.: Centralizers and their applications to generalized inverses. Linear Algebra Appl. 458, 291–300 (2014

    Core–EP inverses in Banach algebras

    No full text

    Solvability of some constrained matrix approximation problems using core-EP inverses

    No full text
    Using the core-EP inverse, we obtain the unique solution to the constrained matrix minimization problem in the Euclidean norm: Minimize‖Mx-b‖2, subject to the constraint x∈ R(Mk) , where M∈ Cn×n, k= Ind (M) and b∈ Cn. This problem reduces to well-known results for complex matrices of index one and for nonsingular complex matrices. We present two kinds of Cramer’s rules for finding unique solution to the above mentioned problem, applying one well-known expression and one new expression for core-EP inverse. Also, we consider a corresponding constrained matrix approximation problem and its Cramer’s rules based on the W-weighted core-EP inverse. Numerical comparison with classical strategies for solving the least squares problems with linear equality constraints is presented. Particular cases of the considered constrained optimization problem are considered as well as application in solving constrained matrix equations. © 2020, SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional

    Weighted composite outer inverses

    No full text
    In order to extend and unify the definitions of W-weighted DMP, W-weighted MPD, W-weighted CMP and composite outer inverses, we present the weighted composite outer inverses. Precisely, the notions of MNOMP, MPMNO and MPMNOMP inverses are introduced as appropriate expressions involving the (M,N)-weighted (B,C)-inverse and Moore–Penrose inverse. Basic properties and a number of characterizations for the MNOMP, MPMNO or MPMNOMP inverse are discovered. Various representations and characterizations of weighted composite outer inverses are studied. General solutions for certain systems of linear equations are given in terms of weighted composite outer inverses. Numerical examples are presented on randomly generated matrices of various orders. © 202

    Properties of the CMP inverse and its computation

    No full text
    This manuscript aims to establish various representations for the CMP inverse. Some expressions for the CMP inverse of appropriate upper block triangular matrix are developed. Successive matrix squaring algorithm and the method based on the Gauss–Jordan elimination are considered for calculating the CMP inverse. As an application, the solvability of several restricted systems of linear equations (RSoLE) is investigated in terms of the CMP inverse. Illustrative examples and examples on randomly generated large-scale matrices are presented. © 2022, The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional
    corecore