2,405 research outputs found
Attached and separated boundary layers on highly cooled, ablating and nonablating models at M equals 13.8
Attached and separated boundary layers on highly cooled, ablating and nonablating models at Mach 13.
Uniform Silicon Isotope Ratios Across the Milky Way Galaxy
We report the relative abundances of the three stable isotopes of silicon,
Si, Si and Si, across the Galaxy using the transition of silicon monoxide. The chosen sources represent a range in
Galactocentric radii () from 0 to 9.8 kpc. The high spectral
resolution and sensitivity afforded by the GBT permit isotope ratios to be
corrected for optical depths. The optical-depth-corrected data indicate that
the secondary-to-primary silicon isotope ratios
and vary much less than predicted on the basis of
other stable isotope ratio gradients across the Galaxy. Indeed, there is no
detectable variation in Si isotope ratios with . This lack of an
isotope ratio gradient stands in stark contrast to the monotonically decreasing
trend with exhibited by published secondary-to-primary oxygen
isotope ratios. These results, when considered in the context of the
expectations for chemical evolution, suggest that the reported oxygen isotope
ratio trends, and perhaps that for carbon as well, require further
investigation. The methods developed in this study for SiO isotopologue ratio
measurements are equally applicable to Galactic oxygen, carbon and nitrogen
isotope ratio measurements, and should prove useful for future observations of
these isotope systems.Comment: 18 pages, 12 figures, 2 tables. Published in The Astrophysical
Journal, Volume 839, Issue
Évaluation économique des programmes de remplacement de la main d’oeuvre expatriée dans les pays en voie de développement : étude du cas de la Côte-d’Ivoire
This study addresses several problems of educational policy posed by the replacement of highly skilled expatriates in the Ivory Coast's labor force. Conceptualizing expatriate replacement as an import-substitution activity in which Ivorian labor substitutes for previously imported labor services, the authors apply a modified Domestic Resource Cost (DRC) analysis to evaluate Ivorian secondary and university educational programs necessary to train the local labor.This methodology, along with more conventional cost-benefit approach, confirms that education is economically desirable in the Ivory Coast and that resource allocation to the upper secondary level is especially warranted. Lower secondary education is useful in so far as it performs a conduit function for higher levels of training. The importance of university education will probably increase as the occupational-educational structure is upgraded through technological development. Finally, consideration should be given to instituting a system of tuition charges in order to equate social and private rates of return in upper secondary and university education
Regular Incidence Complexes, Polytopes, and C-Groups
Regular incidence complexes are combinatorial incidence structures
generalizing regular convex polytopes, regular complex polytopes, various types
of incidence geometries, and many other highly symmetric objects. The special
case of abstract regular polytopes has been well-studied. The paper describes
the combinatorial structure of a regular incidence complex in terms of a system
of distinguished generating subgroups of its automorphism group or a
flag-transitive subgroup. Then the groups admitting a flag-transitive action on
an incidence complex are characterized as generalized string C-groups. Further,
extensions of regular incidence complexes are studied, and certain incidence
complexes particularly close to abstract polytopes, called abstract polytope
complexes, are investigated.Comment: 24 pages; to appear in "Discrete Geometry and Symmetry", M. Conder,
A. Deza, and A. Ivic Weiss (eds), Springe
Hydration of a B-DNA Fragment in the Method of Atom-atom Correlation Functions with the Reference Interaction Site Model Approximation
We propose an efficient numerical algorithm for solving integral equations of
the theory of liquids in the Reference Interaction Site Model (RISM)
approximation for infinitely dilute solution of macromolecules with a large
number of atoms. The algorithm is based on applying the nonstationary iterative
methods for solving systems of linear algebraic equations. We calculate the
solvent-solute atom-atom correlation functions for a fragment of the B-DNA
duplex d(GGGGG).d(CCCCC) in infinitely dilute aqueous solution. The obtained
results are compared with available experimental data and results from computer
simulations.Comment: 9 pages, RevTeX, 9 pages of ps figures, accepted for publications in
JC
SGAS 143845.1+145407: A Big, Cool Starburst at Redshift 0.816
We present the discovery and a detailed multi-wavelength study of a
strongly-lensed luminous infrared galaxy at z=0.816. Unlike most known lensed
galaxies discovered at optical or near-infrared wavelengths this lensed source
is red, r-Ks = 3.9 [AB], which the data presented here demonstrate is due to
ongoing dusty star formation. The overall lensing magnification (a factor of
17) facilitates observations from the blue optical through to 500micron, fully
capturing both the stellar photospheric emission as well as the re-processed
thermal dust emission. We also present optical and near-IR spectroscopy. These
extensive data show that this lensed galaxy is in many ways typical of
IR-detected sources at z~1, with both a total luminosity and size in accordance
with other (albeit much less detailed) measurements in samples of galaxies
observed in deep fields with the Spitzer telescope. Its far-infrared spectral
energy distribution is well-fit by local templates that are an order of
magnitude less luminous than the lensed galaxy; local templates of comparable
luminosity are too hot to fit. Its size (D~7kpc) is much larger than local
luminous infrared galaxies, but in line with sizes observed for such galaxies
at z~1. The star formation appears uniform across this spatial scale. In this
source, the luminosity of which is typical of sources that dominate the cosmic
infrared background, we find that star formation is spatially extended and well
organised, quite unlike the compact merger-driven starbursts which are typical
for sources of this luminosity at z~0.Comment: 18 pages, 10 figure
Soil, plant, and transport influences on methane in a subalpine forest under high ultraviolet irradiance
Recent studies have demonstrated direct methane emission from plant foliage under aerobic conditions, particularly under high ultraviolet (UV) irradiance. We examined the potential importance of this phenomenon in a high-elevation conifer forest using micrometeorological techniques. Vertical profiles of methane and carbon dioxide in forest air were monitored every 2 h for 6 weeks in summer 2007. Day to day variability in above-canopy CH<sub>4</sub> was high, with observed values in the range 1790 to 1910 nmol mol<sup>&minus;1</sup>. High CH<sub>4</sub> was correlated with high carbon monoxide and related to wind direction, consistent with pollutant transport from an urban area by a well-studied mountain-plain wind system. Soils were moderately dry during the study. Vertical gradients of CH<sub>4</sub> were small but detectable day and night, both near the ground and within the vegetation canopy. Gradients near the ground were consistent with the forest soil being a net CH<sub>4</sub> sink. Using scalar similarity with CO<sub>2</sub>, the magnitude of the summer soil CH<sub>4</sub> sink was estimated at ~1.7 mg CH<sub>4</sub> m<sup>&minus;2</sup> h<sup>&minus;1</sup>, which is similar to other temperate forest upland soils. The high-elevation forest was naturally exposed to high UV irradiance under clear sky conditions, with observed peak UVB irradiance >2 W m<sup>&minus;2</sup>. Gradients and means of CO<sub>2</sub> within the canopy under daytime conditions showed net uptake of CO<sub>2</sub> due to photosynthetic drawdown as expected. No evidence was found for a significant foliar CH<sub>4</sub> source in the vegetation canopy, even under high UV conditions. While the possibility of a weak foliar source cannot be excluded given the observed soil sink, overall this subalpine forest was a net sink for atmospheric methane during the growing season
Using sonic anemometer temperature to measure sensible heat flux in strong winds
Sonic anemometers simultaneously measure the turbulent fluctuations of vertical wind (<i>w</i>') and sonic temperature (<i>T</i><sub>s</sub>'), and are commonly used to measure sensible heat flux (<i>H</i>). Our study examines 30-min heat fluxes measured with a Campbell Scientific CSAT3 sonic anemometer above a subalpine forest. We compared <i>H</i> calculated with <i>T</i><sub>s</sub> to <i>H</i> calculated with a co-located thermocouple and found that, for horizontal wind speed (<i>U</i>) less than 8 m s<sup>−1</sup>, the agreement was around ±30 W m<sup>−2</sup>. However, for <i>U</i> &asymp; 8 m s<sup>−1</sup>, the CSAT <i>H</i> had a generally positive deviation from <i>H</i> calculated with the thermocouple, reaching a maximum difference of ≈250 W m<sup>−2</sup> at <i>U</i> ≈ 18 m s<sup>−1</sup>. With version 4 of the CSAT firmware, we found significant underestimation of the speed of sound and thus <i>T</i><sub>s</sub> in high winds (due to a delayed detection of the sonic pulse), which resulted in the large CSAT heat flux errors. Although this <i>T</i><sub>s</sub> error is qualitatively similar to the well-known fundamental correction for the crosswind component, it is quantitatively different and directly related to the firmware estimation of the pulse arrival time. For a CSAT running version 3 of the firmware, there does not appear to be a significant underestimation of <i>T</i><sub>s</sub>; however, a <i>T</i><sub>s</sub> error similar to that of version 4 may occur if the CSAT is sufficiently out of calibration. An empirical correction to the CSAT heat flux that is consistent with our conceptual understanding of the <i>T</i><sub>s</sub> error is presented. Within a broader context, the surface energy balance is used to evaluate the heat flux measurements, and the usefulness of side-by-side instrument comparisons is discussed
Adsorption hysteresis and capillary condensation in disordered porous solids: a density functional study
We present a theoretical study of capillary condensation of fluids adsorbed
in mesoporous disordered media. Combining mean-field density functional theory
with a coarse-grained description in terms of a lattice-gas model allows us to
investigate both the out-of-equilibrium (hysteresis) and the equilibrium
behavior. We show that the main features of capillary condensation in
disordered solids result from the appearance of a complex free-energy landscape
with a large number of metastable states. We detail the numerical procedures
for finding these states, and the presence or absence of transitions in the
thermodynamic limit is determined by careful finite-size studies.Comment: 30 pages, 18 figures. To appear in J. Phys.: Condens. Matte
Phase coexistence of cluster crystals: beyond the Gibbs phase rule
We report a study of the phase behavior of multiple-occupancy crystals
through simulation. We argue that in order to reproduce the equilibrium
behavior of such crystals it is essential to treat the number of lattice sites
as a constraining thermodynamic variable. The resulting free-energy
calculations thus differ considerably from schemes used for single-occupancy
lattices. Using our approach, we obtain the phase diagram and the bulk modulus
for a generalized exponential model that forms cluster crystals at high
densities. We compare the simulation results with existing theoretical
predictions. We also identify two types of density fluctuations that can lead
to two sound modes and evaluate the corresponding elastic constants.Comment: 4 pages, 3 figure
- …
