1,042 research outputs found

    Dilute magnetic semiconductor quantum-well structures for magnetic field tunable far-infrared/terahertz absorption

    Get PDF
    The design of ZnCdSe–ZnMnSe-based quantum wells is considered, in order to obtain a large shift of the peak absorption wavelength in the far infrared range, due to a giant Zeeman splitting with magnetic field, while maintaining a reasonably large value of peak absorption. A triple quantum-well structure with a suitable choice of parameters has been found to satisfy such requirements. A maximal tuning range between 14.6 and 34.7 meV is obtained, when the magnetic field varies from zero to 5 T, so the wavelength of the absorbed radiation decreases from 85.2 to 35.7 μm with absorption up to 1.25% at low temperatures. These structures might form the basis for magnetic field tunable photodetectors and quantum cascade lasers in the terahertz range

    Optically pumped terahertz laser based on intersubband transitions in a GaN/AlGaN double quantum well

    Get PDF
    A design for a GaN/AlGaN optically pumped terahertz laser emitting at 34 µm (ΔE~36 meV) is presented. This laser uses a simple three-level scheme where the depopulation of the lower laser level is achieved via resonant longitudinal-optical-phonon emission. The quasibound energies and associated wave functions are calculated with the intrinsic electric field induced by the piezoelectric and the spontaneous polarizations. The structures based on a double quantum well were simulated and the output characteristics extracted using a fully self-consistent rate equation model with all relevant scattering processes included. Both electron-longitudinal-optical phonon and electron-acoustic-phonon interactions were taken into account. The carrier distribution in subbands was assumed to be Fermi–Dirac-like, with electron temperature equal to the lattice temperature, but with different Fermi levels for each subband. A population inversion of 12% for a pumping flux Φ=10(27) cm(–2) s(–1) at room temperature was calculated for the optimized structure. By comparing the calculated modal gain and estimated waveguide and mirror losses the feasibility of laser action up to room temperature is predicted

    Magnetic field tunable terahertz quantum well infrared photodetector

    Get PDF
    A theoretical model and a design of a magnetic field tunable CdMnTe/CdMgTe terahertz quantum well infrared photodetector are presented. The energy levels and the corresponding wavefunctions were computed from the envelope function Schr¨odinger equation using the effective mass approximation and accounting for Landau quantization and the giant Zeeman effect induced by magnetic confinement. The electron dynamics were modeled within the self-consistent coupled rate equations approach, with all relevant electron-longitudinal optical phonon and electron-longitudinal acoustic phonon scattering included. A perpendicular magnetic field varying between 0 T and 5 T, at a temperature of 1.5 K, was found to enable a large shift of the detection energy, yielding a tuning range between 24.1 meV and 34.3 meV, equivalent to 51.4 μm to 36.1 μm wavelengths. For magnetic fields between 1 T and 5 T, when the electron population of the QWIP is spin-polarized, a reasonably low dark current of ≤1.4×10–² A/cm² and a large responsivity of 0.36−0.64 A/W are predicted

    Designing strain-balanced GaN/AlGaN quantum well structures: Application to intersubband devices at 1.3 and 1.55 mu m wavelengths

    Get PDF
    A criterion for strain balancing of wurtzite group-III nitride-based multilayer heterostructures is presented. Single and double strain-balanced GaN/AlGaN quantum well structures are considered with regard to their potential application in optoelectronic devices working at communication wavelengths. The results for realizable, strain-balanced structures are presented in the form of design diagrams that give both the intersubband transition energies and the dipole matrix elements in terms of the structural parameters. The optimal parameters for structures operating at lambda ~1.3 and 1.55 µm were extracted and a basic proposal is given for a three level intersubband laser system emitting at 1.55µm and depopulating via resonant longitudinal optical(LO)phonons (h omega(LO)approximate to 90 meV). © 2003 American Institute of Physics

    Mud2 functions in transcription by recruiting the Prp19 and TREX complexes to transcribed genes

    Get PDF
    The different steps of gene expression are intimately linked to coordinate and regulate this complex process. During transcription, numerous RNA-binding proteins are already loaded onto the nascent mRNA and package the mRNA into a messenger ribonucleoprotein particle (mRNP). These RNA-binding proteins are often also involved in other steps of gene expression than mRNA packaging. For example, TREX functions in transcription, mRNP packaging and nuclear mRNA export. Previously, we showed that the Prp19 splicing complex (Prp19C) is needed for efficient transcription as well as TREX occupancy at transcribed genes. Here, we show that the splicing factor Mud2 interacts with Prp19C and is needed for Prp19C occupancy at transcribed genes in Saccharomyces cerevisiae. Interestingly, Mud2 is not only recruited to intron-containing but also to intronless genes indicating a role in transcription. Indeed, we show for the first time that Mud2 functions in transcription. Furthermore, these functions of Mud2 are likely evolutionarily conserved as Mud2 is also recruited to an intronless gene and interacts with Prp19C in Drosophila melanogaster. Taken together, we classify Mud2 as a novel transcription factor that is necessary for the recruitment of mRNA-binding proteins to the transcription machinery. Thus, Mud2 is a multifunctional protein important for transcription, splicing and most likely also mRNP packaging

    Lyapunov Mode Dynamics in Hard-Disk Systems

    Full text link
    The tangent dynamics of the Lyapunov modes and their dynamics as generated numerically - {\it the numerical dynamics} - is considered. We present a new phenomenological description of the numerical dynamical structure that accurately reproduces the experimental data for the quasi-one-dimensional hard-disk system, and shows that the Lyapunov mode numerical dynamics is linear and separate from the rest of the tangent space. Moreover, we propose a new, detailed structure for the Lyapunov mode tangent dynamics, which implies that the Lyapunov modes have well-defined (in)stability in either direction of time. We test this tangent dynamics and its derivative properties numerically with partial success. The phenomenological description involves a time-modal linear combination of all other Lyapunov modes on the same polarization branch and our proposed Lyapunov mode tangent dynamics is based upon the form of the tangent dynamics for the zero modes

    On the coherence/incoherence of electron transport in semiconductor heterostructure optoelectronic devices

    Get PDF
    This paper compares and contrasts different theoretical approaches based on incoherent electron scattering transport with experimental measurements of optoelectronic devices formed from semiconductor heterostructures. The Monte Carlo method which makes no a priori assumptions about the carrier distribution in momentum or phase space is compared with less computationally demanding energy-balance rate equation models which assume thermalised carrier distributions. It is shown that the two approaches produce qualitatively similar results for hole transport in p-type Si1-xGex/Si superlattices designed for terahertz emission. The good agreement of the predictions of rate equation calculations with experimental measurements of mid- and far-infrared quantum cascade lasers, quantum well infrared photodetectors and quantum dot infrared photodetectors substantiate the assumption of incoherent scattering dominating the transport in these quantum well based devices. However, the paper goes on to consider the possibility of coherent transport through the density matrix method and suggests an experiment that could allow coherent and incoherent transport to be distinguished from each other

    n-Si/SiGe quantum cascade structures for THz emission

    Get PDF
    In this work we report on modelling the electron transport in n-Si/SiGe structures. The electronic structure is calculated within the effective-mass complex-energy framework, separately for perpendicular (Xz) and in-plane (Xxy) valleys, the degeneracy of which is lifted by strain, and additionally by size quantization. The transport is described via scattering between quantized states, using the rate equations approach and tight-binding expansion, taking the coupling with two nearest-neighbour periods. The acoustic phonon, optical phonon, alloy and interface roughness scattering are taken in the model. The calculated U/I dependence and gain profiles are presented for a couple of QC structures

    A Model-Driven Methodology Approach for Developing a Repository of Models

    Get PDF
    International audienceTo cope with the growing complexity of embedded system design, several development approaches have been proposed. The most popular are those using models as main artifacts to be constructed and maintained. The wanted role of models is to ease, systematize and standardize the approach of the construction of software-based systems. In order to enforce reuse and to interconnect the process of models’ specification and the system development with models, we promote a model-based approach coupled with a repository of models. In this paper, we propose a Model-Driven Engineering methodological approach for the development of a repository of models and an operational architecture for development tools. In particular, we show the feasibility of our own approach by reporting some preliminary prototype providing a model-based repository of security and dependability (S&D) pattern models

    Inequality, Fiscal Capacity and the Political Regime: Lessons from the Post-Communist Transition

    Get PDF
    Using panel data for twenty-seven post-communist economies between 1987-2003, we examine the nexus of relationships between inequality, fiscal capacity (defined as the ability to raise taxes efficiently) and the political regime. Investigating the impact of political reform we find that full political freedom is associated with lower levels of income inequality. Under more oligarchic (authoritarian) regimes, the level of inequality is conditioned by the state’s fiscal capacity. Specifically, oligarchic regimes with more developed fiscal systems are able to defend the prevailing vested interests at a lower cost in terms of social injustice. This empirical finding is consistent with the model developed by Acemoglu (2006). We also find that transition countries undertaking early macroeconomic stabilisation now enjoy lower levels of inequality; we confirm that education fosters equality and the suggestion of Commander et al (1999) that larger countries are prone to higher levels of inequality.http://deepblue.lib.umich.edu/bitstream/2027.42/57211/1/wp831 .pd
    corecore