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*School of Electrical Engineering, 11120 Belgrade, Serbia

ABSTRACT

This paper compares and contrasts different theoretical approaches based on incoherent electron scattering trans-
port with experimental measurements of optoelectronic devices formed from semiconductor heterostructures.
The Monte Carlo method which makes no a priori assumptions about the carrier distribution in momentum or
phase space is compared with less computationally demanding energy-balance rate equation models which as-
sume thermalised carrier distributions. It is shown that the two approaches produce qualitatively similar results
for hole transport in p-type Si1−xGex/Si superlattices designed for terahertz emission. The good agreement of
the predictions of rate equation calculations with experimental measurements of mid- and far-infrared quantum
cascade lasers, quantum well infrared photodetectors and quantum dot infrared photodetectors substantiate the
assumption of incoherent scattering dominating the transport in these quantum well based devices. However, the
paper goes on to consider the possibility of coherent transport through the density matrix method and suggests
an experiment that could allow coherent and incoherent transport to be distinguished from each other.

Keywords: Quantum cascade laser, quantum well infrared photodetector, electron transport, electron scatter-
ing, density matrix

1. INTRODUCTION

Quantum cascade lasers (QCLs) have demonstrated an impressive extension of the infrared frequency range.
Since the first terahertz QCL laser action [1], recent reports have given wavelengths as along as 250µm (1.2
THz) [2] and at 355µm (830 GHz) with the support of external magnetic field [3]. At the same time several
mid-infrared GaAs/AlGaAs QCLs devices have achieved pulsed room temperature operation, for example the
triple quantum well QCL [4] emitting at 9.3µm, the bound to continuum QCL [5] at 11µm and the superlattice
QCL [6] at 12.6µm. In addition continuous wave operation up to 150K has also been reported [7]. The numerous
quantum wells separated by often thin barriers and the single carrier type (these are unipolar devices) make
QCLs an ideal testbed for studies of quantum mechanical transport and this is the focus of this paper.

2. THEORETICAL APPROACHES

Let H = H0 + H ′ be the Hamiltonian of the structure under consideration, where H0 =
∑

α εαa+
α aα is the

interaction-free part of the Hamiltonian with single-particle eigenenergies εα with a+
α and aα being the creation

and anihillation operators of the carrier in single-particle state α. The interaction of carriers with phonons, im-
purities, carrier-carrier interaction and other interaction terms are contained in H ′. A fully quantum mechanical
microscopical description of the carrier dynamics in nanostructures could start from the single-particle density
matrix ραβ = 〈a+

α aβ〉 whose diagonal elements represent the occupancies of single particle states and off-diagonal
elements describe the coherent processes. From the equation of motion of the operators aα in the Heisenberg
picture

i~
daα

dt
= [H0 + H ′, aα] (1)
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one gets that the elements of the density matrix satisfy the following time-dependent equations:

i~
d

dt
〈a+

α aβ〉 = (εα − εβ)〈a+
α aβ〉 + 〈[H ′, a+

α aβ ]〉 (2)

The first term on the right hand side in the previous equation describes the coherent oscillations between states
α and β, while the second term describes the interaction. It is currently thought [8] that coherent processes
play only a minor role in the transport in quantum cascade structures where the existence of many different
layers, interfaces, alloys, other charge carriers, ionised impurities and many active phonon modes from the finite
temperature lead to high levels of carrier scattering [9–11]. This gives very short decoherence times in the range
of 50 fs–1 ps implying that the transport is dominated by incoherent scattering. Different opinions however
do exist and it has been argued that coherent transport is not insignificant for the particular case of transport
through a wide barrier in a terahertz quantum cascade laser where the small anti-crossing energies allow for a
component of resonant tunnelling [12].

Given this dominance of incoherent scattering it is therefore a usual approximation to neglect the off-diagonal
terms in the density matrix thus significantly reducing the number of variables one has to handle with. In the
Markov approximation [13] the density matrix equations then reduce to semiclassical Boltzmann equations:

dfα

dt
=

∑

β

[fβ(1 − fα)Wβα) − fα(1 − fβ)Wαβ)] +
∑

βγδ

[fγfδ(1 − fα)(1 − fβ)Wγδαβ −fαfβ(1 − fγ)(1 − fδ)Wαβγδ]

(3)
where fα are the diagonal elements of the density matrix operator, Wαβ are the single-particle scattering rates
from state α to state β and Wαβγδ are two-particle scattering rates.

There are several ways to solve the Boltzmann transport equation. The Monte Carlo method [14] is a
stochastic approach which simulates the trajectories of a representative ensemble of electrons or holes. In the
limit of a large number of charge carriers and inclusion of all possible scattering rates the Monte Carlo method is
capable of producing a solution of arbitrary accuracy. A simplifying assumption that the charge carriers in any
particular band or subband can be approximated by Fermi-Dirac statistics [10] allows the Boltzmann transport
equation to be replaced by simpler and hence less computationally demanding rate equations. In the case of a
system with discrete energy levels, such as quantum dots or quantum wells in a magnetic field, the Boltzmann
equations are already in the form of rate equations for the occupancies of energy levels, and by solving them one
obtains the same level of accuracy as with Monte Carlo simulations in quantum wells, see for example [15, 16].

It will be demonstrated in this work that this philosophical approach of incoherent transport, which can
be solved by Monte Carlo or rate equation methods, has a wide application across many electronic and opto-
electronics devices, including near- and mid-infrared as well as terahertz quantum cascade lasers, superlattices,
quantum well infrared photodetectors and quantum dot infrared photodetectors.

3. MONTE CARLO VS. RATE EQUATIONS: THE CASE OF P -DOPED
SI1−XGEX/SI QUANTUM CASCADE STRUCTURES

Vertical (i.e. perpendicular to the layers) hole transport in a semiconductor heterostructure offers perhaps
the most demanding challenge for physical modelling because of the multiple and anisotropic energy bands.
Nonetheless there has been a large research effort in this area, related to the efforts to develop infrared sources
using the quantum cascade approach [17] based on Si/SiGe heterostructure, which would therefore be integratable
with standard CMOS electronics. The use of p-type material offers the further advantage of the possibility of
vertical cavity surface emitting lasers (VCSELs) [18].

The hole band structure in p-Si1−xGex/Si was calculated using the 6×6 k · p method whose accuracy is very
good for structures with subband spacings in the range of tens of meV [19]. The method accounts for the mixing of
heavy-hole, light-hole and spin-orbit split-off valence band states, and therefore accounts for the nonparabolicity
and warping of the quantum well subbands. For the purpose of hole scattering calculation the band structure
(energies and wave functions) are tabulated on a 2D grid of in-plane wave vector (k‖) points, which cover an
irreducible wedge of the in-plane Brillouin zone (1/8 of the full zone for [001] growth), of sufficient extent that
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Figure 1. The HH1 and LH1 subband temperatures versus bias dependence calculated for the Si1−xGex/Si quantum
cascade structure described in the text, for different lattice temperatures Tlatt, using either the MC or the SCEB rate
equation method. Hole–hole scattering is not included.

esentially all states accessible for holes are included. The states outside this wedge can then be constructed
using the symmetry properties, by rotation. The second ingredient in analysing transport is to assign all the
states in a cascade to its individual periods, i.e. to find all states assigned to a particular ‘reference’ period,
from which one can then construct all other states in a cascade by space translation and shift of energy. This
is essential in setting up a tight-binding-like description of scattering transport. The peculiarity of hole states
is that this procedure has to be done independently for each k‖ grid point, in contrast to the case of electron
states in n-doped cascades, where the assignment procedure has to be done just once because the wavefunctions
do not depend on k‖.

We next calculate the microscopic (k‖-dependent) scattering rates between all pairs of states on the grid. The
important scattering mechanisms for holes in Si1−xGex/Si which were included in the transport calculations,
are the deformation potential scattering (acoustic and optical phonons, in the later case the Ge-Ge, Ge-Si and
Si-Si modes), alloy disorder scattering, and carrier-carrier scattering. There is no polar LO phonon scattering in
(non-polar) Si1−xGex material, i.e. optical phonons interact with holes only via the deformation potential, and
hence the major scattering mechanism in III/V’s is absent in this material. These microscopic scattering rates
can be further used in two ways:

(i) One is to set up the system of population balance equations for each cell on the k‖-grid for all the subbands
included in consideration, and find the steady-state population distribution, or track the time evolution of the
population. This is the Boltzman equation approach, and the method usually employed to solve it is the Monte
Carlo (MC) method. The output then contains detailed information on the occupancy of each cell, i.e. the hole
distribution over k‖ points of each subband. The population of subbands can then be found by integrating over
all the cells [20].

(ii) The other way is to assume that the carrier distribution over the in-plane wave vector states (cells) within
a subband is quasi-equilibrium like, having the form of a Fermi-Dirac (FD) distribution function, which enables
the evaluation of averaged scattering rates, weighted by such a distribution. This results in a system of rate
equations (RE) for the subband populations. Their number is hugely reduced from the number of equations
present in the discretised form of the Boltzman equation, and the system can be solved much faster. When
imposing the FD form of the carrier distribution over k‖-states of each subband, however, one can decide to
assign to it a fixed temperature (e.g. equal to the lattice temperature, or to some other reasonably chosen value),
or to leave the subband temperature as yet another unknown to be determined (in addition, different subbands
can be allowed to have different temperatures, or can be further assumed to have the same temperature, but
generally different from that of the lattice). In the first case, one has the simple ‘particle-only’ rate equations and
in the later the ‘self-consistent’ energy-balance (SCEB) rate equations, where not just the subband populations
but also their energy content is tracked [21].
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Figure 2. The current density versus bias dependence for the structure described in the text, calculated (a) by the MC,
the SCEB rate equations, and by the simple, ‘particle-only’ rate equation method with the carrier temperature set equal
to Tlatt and to the values delivered by the MC simulation (←MC) and (b) by the SCEB rate equation method with
independent or equal subband temperatures, and by the simple rate equation method. Hole–hole scattering is included.

In order to find the degree of accuracy involved in each of these approximations we have performed numerous
calculations. Consider the simplest nontrivial quantum cascade structure, that has two relevant states per period
(their energies being such that both can be expected to have a sizeable population under the chosen range of
operating biases, while any higher states are almost empty). The structure has one 4.41 nm wide Si0.7Ge0.3

quantum well and one 2.15 nm wide Si barrier in a period, and can be grown strain-balanced on a Si0.8Ge0.2

virtual substrate. Its first excited state (LH1) is 28 meV above the lowest (HH1), and the alignment at k‖ = 0
of HH1 from the preceeding period with LH1 from the next period occurs at 42 kV/cm. For k‖ 6= 0 the
alignment occurs at somewhat different biases, due to subband warping and nonparabolicity. The structure
can be considered as a simple prototype quantum cascade laser (QCL) [20], with emission occuring on the
diagonal (cross-period) transition HH1→LH1 for biases exceeding the alignment bias, provided it remains free
from domain formation [22].

To aid a comparison between the MC and ‘particle-only’ or SCEB rate equation methods we have switched off
the hole–hole scattering. The in-plane hole distributions delivered by the MC simulations generally resemble the
FD distribution, but are quantitatively different to an extent which depends on the bias [21]. In Fig. 1 we plot
the bias dependence of the subband temperatures calculated by the SCEB or extracted from the MC simulation.
It is important to note that the MC method itself does not have any intrinsic carrier temperatures, so these are
calculated from the in-plane distributions, requiring that the actual average of hole kinetic energy equals the
value which would be obtained by giving an effective MC temperature to the FD distribution. Somewhat different
values might be obtained by defining them in some other reasonable manner (e.g. by requiring the best congruence
of MC and FD distributions, etc.). There is therefore a degree of ambiguity in the carrier temperatures extracted
from MC method. However, the general feature present in Fig. 1, and consistent with transport simulations for
electrons [23], is that although the curves are qualitatively similar, the carrier temperatures deduced from the
MC method are higher than those calculated from the SCEB rate equation approach.

The calculated hole current density (Fig. 2(a)) reflects this discrepancy. A part of it is specific to holes: the
k‖-dependent band mixing, coupled with different penetration of heavy- and light-hole components through the
barrier, causes a sensitivity of current to the precise form of the in-plane distribution of holes, as highlighted by
comparing the MC results against those obtained by directly inserting the MC temperatures into ‘particle-only’
rate equations (which clearly is of academic interest, rather than a technically useful approach, but gives insight
into effects stemming purely from the non-FD form of the distribution). This effect is largely absent for electrons
with their simpler subband structure. It should be noted, however, that the discrepancy between the MC and
SCEB simulations shown here is artificially enhanced by the absence of (intra-subband) hole–hole scattering,
which is a much more efficient mechanism which drives the distribution towards an FD-like form than is the



acoustic phonon scattering which is included in these simulations. Therefore, in real situations the non-FD
character of the carrier distribution itself has a relatively small impact on the macroscopic transport properties
(and, in the case of electrons, no impact on their optical activity). On the other hand, comparing the results
found by the different types of rate equation method clearly shows the importance of carrier heating effects, which
must be taken into account, particularly for lower values of lattice temperature. As for the subband populations,
which in fact is the most important parameter for QCL operation, the discrepancy between different methods
turns out to be much smaller, and this feature enables one to employ rate equations (with the energy balance
accounted for, not the simple, ‘particle-only’ rate equations) for efficient simulation of QCL operation, despite
the approximate nature of the method.

Finally, it is of considerable practical interest to explore the importance of allowing independent subband
temperatures, in contrast to assuming all of them to be equal (but still different from the lattice temperature),
because solving the system of rate equations is much faster in the latter case. In Fig. 2(b) we give a comparison
of the SCEB rate equation results, found with either of the two choices, this time with hole–hole scattering
taken into account. The self-consistently calculated but imposed-common temperature of the holes is found
approximately equal to the weighted average of the individual subband temperatures. The agreement for the
curent density, as well as for the subband populations (not shown) is quite good, indicating that the common-
temperature model is yet another reasonable approximation. This should be an even better approximation for
electrons than for holes, as in the latter case the more complicated band structure may still give rise to somewhat
different optical responses.

4. RATE EQUATIONS VERSUS EXPERIMENT IN N-TYPE III-V TERAHERTZ
QUANTUM CASCADE LASERS
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Figure 3. (a) Electric field versus current density characteristics for the first GaAs/Ga1−xAlxAs THz QCL [1] calculated
at a lattice temperature Tlatt=20 K, (b) The population inversion ∆n as a function of the lattice temperature in the first
GaAs/AlGaAs THz QCL [1].

Following well documented applications of the rate equations method to quantum cascade lasers, see for exam-
ple [24–26], Figure 3(a) shows the calculated electric field–current density characteristics at a lattice temperature
of 20K for the first terahertz QCL which was realized by Köhler et al. [1]. An initial self-consistent calculation
was performed under the approximation that electron temperatures are equal to the lattice temperature, fol-
lowing this, kinetic energy rate equations were included which allowed calculation of the electron temperature
under the assumption of equal electron temperatures in all subbands [10, 27]. All relevant electron–LO phonon
and electron–electron scattering mechanisms were included in the calculations. Under the assumption that the
electron temperature remains equal to the lattice temperature, i.e. Te = Tlatt (as depicted by the dotted line in
Fig. 3(a)), the F–J curves show current density saturation and negative differential resistance (NDR) features at
very low currents, which are not consistent with the experimental results [28]. We find with the full calculation
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Figure 4. Electric field versus current density characteristics in a THz QCL based on the LO-phonon depopulation
mechanism [32] calculated at a lattice temperature Tlatt=77 K when electron-LO phonon, electron-electron (EE) and
electron-ionised impurity (IMP) scattering is included (diamonds) and when interface roughness (IFR) and alloy disorder
(ADS) scattering is included (squares). The dashed line with circles represents the experimental data.

(solid line with open squares), which includes kinetic energy balance, i.e. a self-consistent energy balance (SCEB)
approach, that current saturation is predicted at ∼ 680 A/cm2 which is in reasonable agreement with that mea-
sured at ∼ 820 A/cm2. The discrepancy is probably related to the fact that to limit the computational demands
of the problem we have limited the calculations to include only the electron-LO phonon and electron–electron
scattering.

Although the simulation is already computationally demanding, particularly in a superlattice-like structures
with a number of quantum wells and barriers (i.e. a large number of subbands in any one of the QCL periods),
we have extended the present model to include electron–ionised impurity (IMP) and interface roughness (IFR)
scattering. Whilst this makes the model more realistic, the disadvantage is that for the first time in the model
a parameter has been introduced, namely the extent of the interface roughness. To keep things as justifiable
as possible the extent of the interface roughness has not been used as a variable parameter to obtain the best
fit with experiment, it has been taken directly from experimental measurements in similar heterostructures. In
particular, the mean height of the roughness was taken to be one monolayer (2.83 Å) with a correlation length
of 50 Å [29, 30]. The calculations above were repeated with these additional scattering mechanisms and the
calculated electric field–current density characteristics, again at a lattice temperature of 20 K are also shown
in Fig. 3(a) (dashed line with full squares). The calculated saturation current is now ∼ 910 A/cm2 which is
considerably closer but slightly higher than the measured value of ∼ 820 A/cm2. In this case, the discrepancy is
probably due to an overestimation of the interface roughness correlation length.

The calculations also show that, up to the NDR feature, the average electron temperature Te can be ap-
proximated as a linear function Te ≈ Tlatt + αe–lJ , where αe–l ∼ 52 K/(kAcm−2). The most recent micro-probe
photoluminscence measurements in a similar terahertz QCL [31], suggests αe–l ∼ 69 − 77 K/(kAcm−2). The
elevated electron temperature is due to the inefficiency of low energy inelastic scattering at cooling the electron
distributions which heat until they can begin to emit intrasubband LO phonons.

The population inversion ∆n as a function of the lattice temperature is shown in Fig. 3(b). When including
only electron–LO phonon and electron–electron scattering, the calculated population inversion of ∆n=4.2% at
Tlatt=10 K is in very good agreement with the results of a Monte Carlo simulation [33], which was also limited
to the same scattering mechanisms. At lower lattice temperatures (below 30 K) electron–electron and electron-
LO phonon scattering vary slowly with temperature, which makes the active region laser level lifetimes almost
insensitive to temperature. However, above 30 K another effect appears: the electron distributions broaden
which overcomes the small energy spacing between the upper and lower laser levels and LO phonon emission
becomes possible. As a result of this thermally activated LO-phonon emission from the upper laser state, the
population inversion decreases above ∼ 50 K, hence an increase in the threshold currents is expected. Although
less prominent, such an effect is also found when interface roughness and ionised impurity scattering mechanisms



are included, see also Fig. 3(b). In the latter case, temperature independent interface roughness scattering is
comparable to electron-phonon scattering at very low temperatures and, due to the somewhat higher temperature
of the upper laser level, thermally activated LO phonon scattering is more efficient, all of which results in a further
decrease of inversion below ∆n=∼ 2.5 % The maximum operating temperature of the particular device design
is estimated to be 75–80 K, again in good agreement with experimental findings in the first THz QCL [1].

Another set of calculations was performed for a different type of THz QCL design which is based on the
resonant LO phonon depopulation mechanism [32]. This structure exhibits a maximum operating temperature
of 130 K in pulsed mode and 78 K in continuous wave cw mode. The rate equation model was extended to include
another ‘close range’ scattering mechanism, that of alloy disorder (ADS) scattering. The calculated current–
voltage characteristic at 77 K is shown in Fig.4. Without IFR and ADS scattering the maximum current density
was calculated as ∼ 520 A/cm2 which is a little lower than the measured value of ∼ 750 A/cm2. Again, including
additional scattering mechanisms, this time IF and ADS, the calculated electric field–current density F–J I-V
characteristic is in much better agreement with measurement, as clearly indicated in Fig. 4. Furthermore, our
SCEB rate equation method gives a population inversion of ∼5% at 77 K which is consistent with a recent Monte
Carlo simulation in a similar structure at low lattice temperatures, see for example [34–36].

5. RATE EQUATIONS VERSUS EXPERIMENT IN MID-INFRARED QUANTUM
CASCADE LASERS

The doping level in the active region of a QCL is an important parameter with a particular influence on the
dynamic working range of the device. Due to the superior device performance of mid-infrared devices with
45% Al-content there has been a demand for a comprehensive experimental and theoretical analysis of these
designs. With this aim injector sheet doping densities have been analysed in the range 2–14 × 1011cm−2. We
have extended the SCEB approach to include the effects of the free carrier distribution (the Hartree potential) on
the effective band profile as well as to include ionised impurity scattering which is relevant for the higher doping
conditions [37]. As the non-equilibrium carrier distribution is not pre-defined, the Schrödinger and Poisson
equations as well as the system of scattering rate equations are intrinsically coupled. As a consequence, only
convergence of both processes (self-self-consistency) will give an accurate solution for the carrier distribution.
In this particular case, the following relevant scattering mechanisms have been taken into account: electron-
phonon, electron-electron and ionised impurity scattering. The latter is expected to be an important scattering
interaction at the higher doping levels. An initial set of calculations showed that the scattering owing to acoustic
phonons can be assumed to be negligible in the analysis of mid-infrared QCLs because of their large level energy
separation and relatively high operating temperature.

The electron transport in the λ ∼ 9µm GaAs/Al0.45Ga0.55As QCL reported in Ref. [4] was simulated, and the
non-equilibrium distribution over subbands for injector doping (sheet electron) densities ranging from 2 × 1011

to 14 × 1011cm−2 calculated at 77 K. For the conventional doping levels of 4–6×1011cm−2 the self-consistent
band-bending owing to the specific electron distribution is not prominent and does not considerably change the
electronic structure (energies and wavefunctions) as shown in Fig. 5a. The calculated current density-electric field
characteristic is well supported by the original experimental data [4, 38]. However, for higher doping densities
the band profile becomes quite different, see Fig. 5b. This is especially important in the working regime close to
resonant alignment. i.e. just below the current density saturation and before the fall of the optical power. For
lower doping, and an applied field of 60kV/cm, the coupling between the lowest injector state and upper laser
level is quite strong and the system is close to resonance. Quite the opposite occurs at higher doping and for the
same value of applied field the levels are now widely separated and the system is far from reaching the resonant
condition. This is a direct consequence of the electron-ionised donor separation within each QCL period, forming
v-shaped local field domains. This domain formation is especially pronounced at high doping levels.

We also explored the behaviour of the maximal current density (the current density just before the current
saturation) as well as the maximal gain in the simulated QCL. In Fig. 6(a) the saturation current density
(which corresponds to the resonant alignment of the lowest injector state and the upper laser level) and the
maximal gain corresponding to this current are presented as a function of the doping density. The saturation
current exhibits a linear dependence for doping densities up to 8 × 1011cm−2 and clear saturation for higher
doping levels. The explanation for such behaviour is domain formation, as mentioned earlier. As the doping
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Figure 5. A schematic diagram of the calculated self-self-consistent conduction band profile, quasi-bound energy levels
and wavefunctions squared of a GaAs/Al0.45Ga0.55As QCL for sheet carrier densities of (a) 4×1011 and (b) 10×1011cm−2

and an applied external electric field of 60kV/cm. The laser levels are shown in bold and the lowest injector state by
dashed lines. The doped region of the injector is also indicated.

level increased, the influence of the Hartree potential on the band profile becomes more important, preventing
resonant alignment in the working range of applied electric fields. The v-shape local domain tilts the doped
part of the injector region, thus increasing the local electric field, and lowering the lowest injector state energy.
In contrast, the local electric field in the lower part of the injector region (close to the injection barrier) is
decreased in order to preserve a constant bias across the period, and the region is tilted in the opposite direction
increasing the upper laser level energy. Both effects act to separate the lowest injector and the upper laser
level and consequently prevent resonant tunnelling. The inset of Fig. 6(a) shows the experimental measurements
of the saturation currents for different doping densities. Results for both the 45% and 33% aluminium mole
fraction in QCLs barriers are taken into account as the difference in structures has a minimal affect for 77 K
temperature operation [4]. The calculated values of the saturation currents are somewhat higher than measured,
however, the experimental behaviour is clearly comparable to theoretical results. The saturation current exhibits
similar behaviour showing a clear saturation at the higher doping densities as theoretically predicted. Following
this work, effect of saturation of maximal current for higher levels of injector doping has been measured in
another GaAs-base mid-infrared laser structure [38]. More recently the effect has been observed experimentally
in InAs/AlGaSb [39] and InGaAs/InAlAs/AlAs [40] mid-infared QCLs. The influence of the saturation of the
maximal current can also be seen in the maximal gain.

The electron temperature in the single temperature approximation, calculated as a function of current density
at 80K and 240K, for different doping densities is presented in Fig. 6(b) [41]. Although the dependences are well
fitted by a quadratic function (dashed lines), for the range of working current densities, the quadratic bowing is
rather small, thus a linear functional form can be adopted and commonly characterised by a electron temperature-
current coupling constant. For a fixed value of the current density, a decrease of the electron temperature with
doping has been observed. A more macroscopic explanation can be presented in terms of an effective decrease
of input electrical power PE, i.e. the same value of the current density at higher doping corresponds to the
lower applied bias than in case of a lower doping. Also, the power per electron decreases as the number of
electrons increases. Hence, for the same current density, the electrons in the QCL, in the higher doping regime,
need to heat up less than for lower doping, in order to facilitate a LO-phonon emission and an efficient heat
dissipation. This was confirmed by calculating the ratio between the relative increase in electron temperature
and power of each individual electron (Te − TL)/(PE/Ns) which shows almost constant behaviour for all doping
levels. Consequently, the coupling constant drops with increased doping from 10.3K/kAcm−2 at 4.1× 1011cm−2

to 7.1K/kAcm−2 at 6.5 × 1011cm−2 at 80K and from 22.2K/kAcm−2 at 4.1 × 1011cm−2 to 14.2K/kAcm−2 at
6.5×1011cm−2 at 240K. The value at 4.1×1011cm−2 at 240K is in good agreement with published experimental
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Figure 6. (a) Simulated saturation current density (circles) and maximal modal gain (squares) as functions of the doping
density. Inset: Experimental measurements of the saturation current for 45% Al (circles) and 33% Al (diamonds) QCL
devices for different doping densities, (b) Calculated electron temperature as a function of the current density for the
three doping densities of 4.1× 1011cm−2 (circles), 5.2× 1011cm−2 (squares) and 6.5× 1011cm−2 (diamonds) at the lattice
temperatures of (a) 80 K and (b) 240 K. Quadratic fits are given by dashed lines. Insets: The maximal simulated electron
temperature as a function of the injector doping density.

value of ∼ 28K/kAcm−2 determined from micro-probe photoluminescence measurements [42] . The maximal
value of the electron temperature, which corresponds to the current density just before saturation, is found to
increase linearly with doping. The evaluated increase was around 40 K (i.e. 17%) at 80 K in comparison with
∼ 20K (6%) at 240 K. The latter is due to reduced LO-phonon scattering sensitivity to doping density change
at high temperatures.

6. RATE EQUATIONS VERSUS EXPERIMENT IN QUANTUM WELL INFRARED
PHOTODETECTORS (QWIPS)
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Figure 7. (a) Schematic diagram of the conduction band profile and the principles behind the QWIP physical model, (b)
The calculated (solid line and circles) and the experimental (dashed line and squares) dark current density versus bias
potential for a 8.5 µm QWIP at 77 K.

Quantum well infrared photodetectors (QWIPs) are similar to quantum cascade lasers in that they are
unipolar devices and are usually made from biased periodic III-V semiconductor heterostructures. For a review



of recent developments in QWIPs see, for example [43]. In the first instance they appear simpler than QCLs in
that instead of several quantum wells, a period of the device is made from just one quantum well (usually between
30–100 Å wide) separated by a thick barrier (often greater than 200–300 Å) from the next well. The devices
work by absorbing photons through electron transitions from the doped quantum wells to the above barrier
continuum. From a theoretical viewpoint this is more complicated than QCLs since the transitions occur from
two-dimensional confined states in the quantum wells to three-dimensional extended states in the continuum,
which would make the description a mixture of two- and three-dimensional states giving complications for the
calculation of scattering rates. This is overcome theoretically by ‘discretising the continuum’ and summing
all scattering rate contributions to the transport over more and more closely spaced continuum levels until
convergence is acheived [44], see Fig. 7(a).

With this approach the system can again be represented by sets of coupled rate equations which can be solved
self-consistently to yield the number of electrons in each state and their distribution up the continuum levels.
From this fundamental description all the physical observables of the device can be deduced which includes the
responsivity versus wavelength and bias [45]. In particular Fig. 7(b) shows a comparison of calculations of the
dark (or noise) current in a GaAs/Ga1−xAlxAs QWIP designed for absorption at 8.5 µm in comparison with the
experimental measurements [46]. It can be seen that the calculations give good agreement on the qualitative form
of the relationship between the dark current and the bias as well as good agreement on the absolute magnitude.
Further information on other physical observables are available in a recent paper, see [45].

7. RATE EQUATIONS VERSUS EXPERIMENT IN QUANTUM DOT INFRARED
PHOTODETECTORS (QDIPS)
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Figure 8. Calculated dependence of the dark current density on the electric field at three different temperatures and the
experimental dark current results [47] at T = 77K.

Since the initial realization of infrared photodetectors based on quantum dots (QDIPs), there has been a lot
of experimental progress, however there has been much less work on theoretical modelling which motivated us to
develop a model of electron transport in QDIPs. The QDIP is considered as a periodic superlattice of quantum
dots. The energy levels and wave functions belonging to one period are found using the 8-band k·p method
with the strain distribution taken into account using the continuum mechanical model and found using the finite
element method. The populations of energy levels and the current in the device are found from the semiclassical
(Boltzmann equation) model, which due to the discreteness of the energy levels reduces to the following system
of rate equations:

dni

dt
=

∑

j 6=i

Wjinj

(

1 −
1

2
ni

)

−
∑

j 6=i

Wijni

(

1 −
1

2
nj

)

−
∑

j

σp
ij(ω)(ni − nj)Φ, (4)

where 0 ≤ ni ≤ 2 is the occupancy of level i including electrons of both spin, Wij is the total transition rate from
state i to state j due to interaction with LO and LA phonons calculated as in [15], σp

ij(ω) is the optical cross



section between states i and j for incident radiation of angular frequency ω and polarization p and Φ is the flux
of the incident radiation. The effect of final state blocking is included via the terms

(

1 − 1

2
ni

)

that represent the
probability that the final state is empty.

From the steady-state solution of the system of rate equations, the population of the energy levels within
the dots and in the surrounding discretised continuum were found, in a method similar to our simulations of
quantum well infrared photodetectors [16, 45]. Combining these population densities with lifetimes allowed the
current density to be calculated. The method was applied to the InAs/GaAs QDIP reported in [47] and the
calculated dark current is shown in Fig. 7. The results of the simulation are in agreement with the reported dark
current experimental measurements at T=77 K.

8. DENSITY MATRIX MODELLING OF COHERENT TRANSPORT EFFECTS

Despite the success described above of incoherent Boltzmann transport equation approaches to the description
of the properties of quantum cascade lasers there has been mounting interest in possible coherent transport
effects, particularly in terahertz quantum cascade laser where the small anti-crossing energies may allow resonant
tunnelling [48]. Further motivation for this work has been supplied by mounting theoretical arguments for
coherent effects, see for example [49, 50].

Our approach to investigate the significance of coherent transport effects is based on the density matrix.
Starting from a general quantum kinetic approach which includes the interactions of electrons with longitudinal
optical phonons and a classical light field it describes the electron dynamics at the Boltzmann, Markovian and
non-Markovian levels of approximation. A full description of our method and the mathematics is available in our
recent work [51]; however briefly: we consider electrons in the conduction band of a quantum cascade laser with
an external magnetic field applied perpendicular to the layers. This magnetic field localises the electron motion
in the plane of the layers and leads to the quantum well subbands splitting into a series of discrete Landau levels.
With many Landau levels originating from each quantum well subband there is the potential for the problem to
become too demanding computationally to solve. Therefore it is limited by focussing on a device configuration
which has relatively few subbands in a period, keeping the temperature low to restrict the number of Landau
levels occupied and by introducing a phenomenological damping parameter ~γ which represents the higher-order
correlations in the density matrices.

The quantum kinetics are essentially non-Markovian as the time evolution of the density matrix elements
depends on their values at earlier times; i.e. there is a memory effect. The Markovian level of approximation that
we also use neglects this memory time effect which stems from the energy-time uncertainty. In each calculation
we also recover the semi-classical Boltzmann equations for comparison.

Fig. 9(a) illustrates the active region design chosen for this study. The device is a GaAs/Ga0.7Al0.3As three
quantum well terahertz quantum cascade laser designed to emit at 15.2 meV (equivalent to 3.7 THz or 81 µm)
when biased at 16.2 kVcm−1. The design is a simplification of the original injectorless devices of Hu et al. [52]
and has its peak gain when the ground state (1) is biased into close energy alignment with the upper laser level
(3) of the following period.

The electron densities summed over the Landau levels originating from the 3 active region states calculated for
the three levels of approximation are shown in Fig. 9(b). It can be seen that for a particular value of the damping
parameter (~γ = 1 meV, say) the predicted populations are quite similar. The generic effect of smoothing out
the features of the curves are illustrated by the inclusion of a set of data for the non-Markovian approximation
with an increased value of the damping parameter. Of course, the electron densities themselves are not physical
observables so it is important to turn attention towards something that may be measured by experiment and
the following two figures do just that.

Fig. 10(a) illustrates the results of calculations of the current density through the quantum cascade laser
region as a function of magnetic field for the fixed (design) bias field of 16.2 kVcm−1. It can be seen from the
figure that the Boltzmann and Markovian approximations yield very similar results. Whilst the non-Markovian
data has a higher and broader peak, without the shoulder at 7 T, it is unlikely that given a measurement on
a device that a comparison between theory and experiment could allow identification of the mode of quantum
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transport. However, the same is not true for the predictions of the optical gain versus energy (or wavelength)
around the lasing transition which are shown in Fig. 10(b).

Fig. 10(b) does again show that the predictions of the Boltzmann and Markovian approximations to the
density matrix are quite similar; however in these calculations the predicted optical gain versus energy (or
wavelength) for the non-Markovian approach is quite distinct. Rather than just a broad gain profile with a
shoulder; the non-Markovian data shows two clearly resolved sharp peaks. Measurements of this type have been



performed for quantum cascade lasers, see for example [53]; however they are difficult to perform and require
a broad band terahertz source to provide the excitation across a range of energies around the lasing transition,
hence experiments of this type are quite infrequent. We propose that a joint effort between theory and experiment
be made to shed light on the nature of the electron transport in these devices.

9. CONCLUSION

The full Monte Carlo simulations of the carrier distributions across the quantum well subbands of biased semi-
conductor heterostructures have substantiated our rate equation calculations discussed here and elsewhere, and
indicate that in unipolar optoelectronic devices at room temperature the electrons or holes within a band or
subband can be represented to a good approximation by a Fermi-Dirac distribution. However, the latter are
generally specific to a particular band or subband and certainly have their own quasi-Fermi energy. In addition,
the temperature characterising each of these distributions in the steady-state is above that of the lattice and
can be calculated by assuming equilibrium in the phonon generation rate (energy balance). It has been found
that in the class of devices which includes quantum cascade lasers and quantum well infrared photodetectors,
the physical observables can be predicted to good accuracy by assuming the same electron temperature across
the series of subbands.

Perhaps more important than the successful comparison with the Monte Carlo simulations, is the validation of
the rate equations approach with experimentally measured physical observables. It must be noted that the only
inputs to these calculations are materials constants such as the well and barrier widths, the barrier heights, the
effective masses, dielectric constants, LO phonon energy, etc. and the calculations are able to predict observables
such as saturation, dark and threshold currents, laser gain, etc. without adjusting any parameters to achieve a
best fit. The only instance of a parameter entering the process is in the case of interface roughness scattering
where the correlation length may vary from heterostructure to heterostructure so a single value was taken from
an experimental paper. Thus the conclusion must be that, given that the methods are successful in explaining
experimental data then the a priori assumption that the transport is dominated by incoherent carrier scattering
is true.

However, in order to satisfy the authors’ curiosity and for completeness we have also developed a model of the
electron transport in quantum cascade laser based on the density matrix approach. Again for thoroughness we
have performed calculations at the Boltzmann, Markovian and non-Markovian levels of approximation. The first
two of these produce quite similar, certainly experimentally indistinct, results and aid in model validation. Whilst
the latter predicts current densities similar to the Boltzmann and Markovian cases it predicts a quite different
optical gain spectrum. We propose that further measurements of this effect be coupled with a coordinated
theoretical effort to see if transport in quantum cascade lasers in certain instances has aspects of coherence and
is better described by non-Markovian dynamics.
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