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Abstract 

 

In this work we report on modelling the electron transport in n-Si/SiGe structures. The 

electronic structure is calculated within the effective-mass complex-energy framework, 

separately for perpendicular (Xz) and in-plane (Xxy) valleys, the degeneracy of which is 

lifted by strain, and additionally by size quantization. The transport is described via 

scattering between quantized states, using the rate equations approach and tight-binding 

expansion, taking the coupling with two nearest-neighbour periods. The acoustic phonon, 

optical phonon, alloy and interface roughness scattering are taken in the model. The 

calculated U/I dependence and gain profiles are presented for a couple of QC structures. 
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1. Introduction 

Following the successful realization of GaAs/AlGaAs based THz quantum 

cascade lasers, Si/SiGe quantum cascade structures are attracting considerable attention 

as a very promising technology for the same purpose. This would offer compatibility and 

even monolithic integration with the standard CMOS technology. Within the Si/SiGe 

system, the p-doped structures have been explored in more detail, because of larger 

discontinuity of the valence band at heterointerfaces. For THz emission, however, even 

modest discontinuities would suffice, which makes n-doped structures just as interesting, 

and here we report on modeling the electron transport and light emission in n-Si/SiGe 

cascades. We have previously made extensive modelling of hole transport [1], 

demonstrated the growth of p-Si/SiGe strain-symmetrized cascades with up to 1200 

layers, and observed THz electroluminescence from them [2]. Mid-infrared luminescence 

has been observed by another group [3]. In this paper we consider electron transport in n-

doped Si/SiGe cascades. This is quite different from transport in n-doped GaAs/AlGaAs 

cascades, both because one of the major scattering processes � polar LO-phonon 

scattering � does not exist in Si/SiGe, and because of the presence of two types of 

quantized electronic states. 

 

2. Theory and computational details 

Si1-xGex alloys with x < 85.0  are similar to the silicon, in that the conduction band 

minima appear near the X point of the Brillouin zone. Accordingly, the low-lying 

conduction band quantized states in a Si/SiGe multilayer structure originate from the six 

X valleys, and depend on the potential experienced by electrons in these valleys. The X 



3 

valleys are anisotropic, having different longitudinal and transverse effective mass. To 

find the electronic subband structure we employ the effective mass envelope function 

Schrodinger equation description. For structures grown on the conventional, [001] 

oriented substrate, two X valleys with axis parallel to the growth direction (denoted as 

Xz) give rise to quantized subbands different from those of four X valleys whose axes are 

perpendicular to the growth direction (denoted as Xxy). This is because the quantization 

effective masses are different in the two cases, amounting to el mm 916.0=  and 

et mm 19.0= in both materials, where em  is the free electron mass. Furthermore, the 

different lattice constants of Si and Ge imply that layers in Si/SiGe cascade have to be 

uniaxially strained, the amount of strain being set by the choice of the substrate 

composition (Ge molar fraction xs), in turn chosen so to achieve strain balance. The in-

plane lattice constant of epilayer material equals that of the substrate, while the 

perpendicular lattice constant changes. The strain lifts the degeneracy between the six X 

valleys, and hence also influences the subband energies. The potential energy (position of 

the X valley bottom) in a strained Si1-xGex alloy layer, measured from the valence band 

top of the substrate, is calculated according to [4] 
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where X stands for either Xz or Xxy, so∆  is the composition dependent spin-orbit splitting, 

])[06.074.0()(, eVxxxE ssavv ⋅−⋅−=∆  is the average valence band offset between 

relaxed substrate and this alloy, 2206.034.017.1)( xxxEg +−= is the (experimental) 

band gap of the alloy, )2(,, zzxxVhydavv aE εε +=∆  is hydrostatic strain component induced 

change of valence band offset, )2)(3/( zzxxud

H

hydE εε +Ξ+Ξ=∆  the hydrostatic strain 
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component induced shift of X valley edge, while 3/)(2 xxzzu

Xz

uniE εε −Ξ=∆  and 

3/)( xxzzu

Xxy

uniE εε −Ξ−=∆  are the uniaxial strain component induced shifts of X valley 

edge (different for the two types of X valleys). The strain components in a layer are given 

by 1/ 0 −== aayyxx εε  and xxzz CC εε )/2( 1112−= , where 0a  and a  are lattice constants 

of unstrained layer and substrate respectively. The lattice constant of an unstrained layer 

with Ge mole fraction x  is given by )1()1()( xxbxaxaxa bowSiGe −⋅⋅−−⋅+⋅= . 

The material constants used in this calculation are )1.3(54.4 −−=Va ,  for the 

germanium and linear interpolation for the Si1-xGex alloys, )4.9(6.8=Ξu  and 

)92.4(0.6 −−=Ξd , )315.1(675.111 =C , )494.0(650.012 =C , a=0.543(0.565) nm for Si 

(Ge). Linear interpolation is used for the Si1-xGex alloy parameters, except for the lattice 

constant where bowing was taken into account, with 00188.0=bowb  1/nm. 

For practically realizable, strain balanced structures, with Si and SiGe layers 

grown on a substrate with composition in between, the Si layers are quantum wells for 

both types of electrons (valleys), with Xz valley shifted below and Xxy valley above their 

position in unstrained Si, and the opposite holds for SiGe alloy layers, implying much 

shallower wells for Xxy than for Xz electrons. Combined with the fact that lm  is over 4 

times larger than tm , the few lowest subbands will belong to the Xz valley, and are much 

more strongly bound that Xxy valley subbands. 

In biased quantum cascade structures the subbands are not strictly discrete 

(instead, one has more or less sharp resonances in the continuum), but in most cases, e.g. 

in conventional III-V based cascades, these are sharp enough that one can solve the 

Schrodinger equation for discrete states, using box boundary conditions. The shallow 
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wells present for Xxy electrons in Si/SiGe would make such an approach inappropriate. 

Therefore, we have used the complex energy method [5], which allows subband energies 

to take complex values and then delivers better-behaved and normalizable resonant state 

wave functions, which can be more reliably used in scattering rate calculations. The 

imaginary component of energy here corresponds to the tunneling rate, and in actual 

structures was usually small enough to be neglected, so only the real part of energy was 

further used. Among all the states found in a multiple period structure, some are assigned 

to belong to the reference (�central�) period, based on their localization properties, and 

then are replicated (shifted in space and energy) to obtain states assigned to the 

neighbouring periods. 

 Electrons in the structure change their quantum states by scattering with phonons, 

on interface roughness, alloy disorder, ionized impurities, carrier-carrier scattering. In 

this paper we consider the first three mechanisms, and take the small enough doping that 

the last two can be neglected. Furthermore, we take that photon emission / absorption 

processes do not contribute significantly to electron transport (cascade operation below 

lasing threshold). With two equivalent Xz and four equivalent Xxy valleys, there are as 

many sets of degenerate subbands. Some scattering processes cause the electrons to 

change the valley they belong to (and perhaps also the subband index), and other only act 

within different subbands of the same valley. 

If initial and final states belong to different X valleys, the (intervalley) scattering 

is caused by large wave vector phonons. Processes in which electron scatters between 

two X valleys oriented at °90 , e.g. Xz+ and Xy+, are f - processes, and those between two 

valleys oriented at °180 , e.g. Xz+ and Xz-, are g - processes. It should be noted, therefore, 
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that two subbands of Xz valley can be coupled by g-processes (e.g. if the initial state 

belongs to Xz+, and the final to Xz-). Some of these processes are "allowed" and others are 

"forbidden". On the other hand, the small-wave vector acoustic phonons only cause 

transitions between states belonging to the same valley, e.g. both to Xz+, and the same is 

assumed for interface roughness and alloy disorder scattering. The phonon scattering 

rates are calculated according to [6], and the last two scattering rates according to [7]. 

The energy-dependent scattering rates are then averaged over the in-plane electron 

distribution, allowing the electron temperature to differ from the lattice temperature. In 

numerical calculations we use the parameter values for Si as a good approximation, 

because this is the well material where most of the wave functions are localized. The 

phonon scattering parameters were taken from [8], and for the interface roughness 

scattering we used the values ∆=0.4 nm and Λ=16 nm. 

Denoting with in  electron concentration in the quantum state i  of the �central� 

period, and explicitly accounting for N such states, we assume the periodicity of electron 

distribution over periods, i.e. KK ==== +− NiiNi nnn  for every Ni ,2,1 K= , where 

Nin −  and Nin +  are densities on state i  in the periods nearest to the "central", Nin 2−  and 

Nin 2+  in the second nearest neighbours and, consistent with it, we assume electrical 

neutrality, ∑ =
=

N

i Di Nn
1

, where DN  is the donors doping per period. Using the shift-

invariance of scattering rates, the rate equations read 
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In the steady state one of the equations is replaced by the electrical neutrality condition. 

One could add the thermal balance rate equations to find electron distribution of each 

subband. In the present calculation, however, we did not use such more elaborate model, 

and electron temperatures were fixed to values larger than the lattice temperature, chosen 

to lie within the range found in previous calculations in p-Si/SiGe cascades [1]. 

 

3. Results and discussion 

 Numerical calculations were performed for two simple cascade structures: (a) Si(6 

nm)/Si0.65Ge0.35(1 nm), and (b) Si(8 nm)/Si0.6Ge0.4(1 nm), both grown on Si0.95Ge0.05 

substrate. The Xz state spacing in them is in tens of meV range (precise values depending 

on the bias, but approx. 27 meV and 20 meV between the lowest two states, 

respectively), and there is just one Xxy state localized in the wells, lying between the first 

and second excited Xz states. The donor doping was assumed to be 10
11

 cm
-2

 per period, 

the carrier temperatures were set to 150 K (a) and 100 K (b), and the lattice temperature 

to 20 K. The calculated population of states and current are shown in Figs.1 and 2. There 

clearly exist ranges of bias fields where inversion appears between some two subsequent 

Xz states (i.e. where the transition matrix element can be significant). To be sustainable 

and useful, however, the operating point of the cascade should not be in the range where 

the differential resistance is negative, otherwise one can expect domain formation which 

would drive the cascade out of such operating point. A closer look at Figs.1 and 2 shows 

that there are, albeit narrow, bias ranges where the population inversion coexisting with 

stable operation appears possible. 
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 The calculated fractional gain / absorption profiles for the two cascades biased at 

suitably chosen fields is shown in Fig.3, with the linewidth (FWHM) of 10 meV was 

assumed. This amounts to gain coefficients of 18.6 cm
-1

 at photon energy of 27 meV for 

structure (a), and 4.4 cm
-1

 at 21 meV for structure (b), the former being in practically 

interesting range. The gain scales linearly with the doping density, but additional 

scattering mechanisms which were here neglected (carrier-carrier, and ionized impurity 

scattering) would have to be included in calculation for large values of doping. Certainly, 

further improvements should be expected from more complex structure of the cascade 

period. 

  

4. Conclusion 

We have considered electron transport in n-Si/SiGe cascade structures, using the 

rate equations approach and tight-binding expansion, taking the coupling with two 

nearest-neighbour periods. The acoustic phonon, optical phonon, alloy and interface 

roughness scattering are taken in the model. The calculated U/I dependence and gain 

profiles are presented for a couple of QC structures. The existence of technically 

significant gain, together with positive differential resistance in narrow ranges of bias 

fields is predicted. 
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Figure captions 

 

Fig.1. The population of four lowest Xz subbands (solid lines) and the Xxy subband (dot-

dashed line), and the current density (dashed line) calculated for Si/SiGe cascade 

structure (a) described in the text. 

 

 

Fig.2. Same as in Fig.1, but for the structure (b). 

 

 

Fig.3. The fractional (per period) gain / absorption profile calculated for the cascade (a) 

biased at 43 kV/cm (dashed line), and cascade (b) biased at 56 kV/cm (solid line). The 

luminescence line FWHM was set to 10 meV. 
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