1,242 research outputs found

    Ocular hypertension in myopia: analysis of contrast sensitivity

    Get PDF
    Purpose: we evaluated the evolution of contrast sensitivity reduction in patients affected by ocular hypertension and glaucoma, with low to moderate myopia. We also evaluated the relationship between contrast sensitivity and mean deviation of visual field. Material and methods: 158 patients (316 eyes), aged between 38 and 57 years old, were enrolled and divided into 4 groups: emmetropes, myopes, myopes with ocular hypertension (IOP≥21 ±2 mmHg), myopes with glaucoma. All patients underwent anamnestic and complete eye evaluation, tonometric curves with Goldmann’s applanation tonometer, cup/disc ratio evaluation, gonioscopy by Goldmann’s three-mirrors lens, automated perimetry (Humphrey 30-2 full-threshold test) and contrast sensitivity evaluation by Pelli-Robson charts. A contrast sensitivity under 1,8 Logarithm of the Minimum Angle of Resolution (LogMAR) was considered abnormal. Results: contrast sensitivity was reduced in the group of myopes with ocular hypertension (1,788 LogMAR) and in the group of myopes with glaucoma (1,743 LogMAR), while it was preserved in the group of myopes (2,069 LogMAR) and in the group of emmetropes (1,990 LogMAR). We also found a strong correlation between contrast sensitivity reduction and mean deviation of visual fields in myopes with glaucoma (coefficient relation = 0.86) and in myopes with ocular hypertension (coefficient relation = 0.78). Conclusions: the contrast sensitivity assessment performed by the Pelli-Robson test should be performed in all patients with middle-grade myopia, ocular hypertension and optic disc suspected for glaucoma, as it may be useful in the early diagnosis of the disease. Introduction Contrast can be defined as the ability of the eye to discriminate differences in luminance between the stimulus and the background. The sensitivity to contrast is represented by the inverse of the minimal contrast necessary to make an object visible; the lower the contrast the greater the sensitivity, and the other way around. Contrast sensitivity is a fundamental aspect of vision together with visual acuity: the latter defines the smallest spatial detail that the subject manages to discriminate under optimal conditions, but it only provides information about the size of the stimulus that the eye is capable to perceive; instead, the evaluation of contrast sensitivity provides information not obtainable with only the measurement of visual acuity, as it establishes the minimum difference in luminance that must be present between the stimulus and its background so that the retina is adequately stimulated to perceive the stimulus itself. The clinical methods of examining contrast sensitivity (lattices, luminance gradients, variable-contrast optotypic tables and lowcontrast optotypic tables) relate the two parameters on which the ability to distinctly perceive an object depends, namely the different luminance degree of the two adjacent areas and the spatial frequency, which is linked to the size of the object. The measurement of contrast sensitivity becomes valuable in the diagnosis and follow up of some important eye conditions such as glaucoma. Studies show that contrast sensitivity can be related to data obtained with the visual perimetry, especially with the perimetric damage of the central area and of the optic nerve head

    Semi-empirical approach to the simulation of molecule-surface reaction dynamcis

    Get PDF
    Catalysis is of extreme relevance in the production of everyday materials and plays a central role in many aspects of our life. On the industrial level, metal based catalysts are widely used to produce molecular hydrogen, which can be used as fuel, or nitrogen, one of the building blocks in the fertilizers synthesis, and other fundamental molecules. A better understanding of heterogeneous catalyzed processes would help to design better and more efficient catalysts but it is hard to achieve because of their high level of complexity. Molecular dissociation on metal surfaces is usually a multi-step process which can be best investigated through a joint experimental and theoretical effort. The comparison of molecular beam experiments with molecular dynamics simulations can help to improve over the theoretical method used, called density functional theory (DFT), in order to achieve chemical accuracy (i.e., errors smaller than 1 kcal/mol) for the reaction studied. As we show in the research reported in the thesis, being able to accurately compute the dissociation barriers for methane on metals like nickel and platinum is of great importance in order to make predictions about the most reactive sites on the surface and possibly, in the future, it can help improving over industrial catalysts. This work has been made possible by financial support by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) and by the European Research Council through an ERC-2013 advanced grant (Nr. 338580), and with computer time granted by NWO Exacte Wetenschappen, EW (NWO Physical Sciences Division).Theoretical Chemistr

    Power-aware allocation of MBSFN subframes using Discontinuous Cell Transmission in LTE systems

    Get PDF
    In LTE and its evolutions, energy efficiency is a critical aspect, also in view of the dramatic traffic growth foreseen for the next years. Cell Discontinuous Transmission (DTX) techniques can be important tools to achieve the needed efficiency in the networks, and one possibility is to implement the DTX by switching off the eNB at some subframes (MBSFN subframes) and not in others (where reference signals are also transmitted). Switching schedules in LTE are made for larger periods (e.g., 40/80ms or even more). We present an algorithm that i) estimates how many resources will be needed in a period, and ii) shows how many resource blocks to activate in each subframe so as to maximize the power efficiency. The problem is formulated as an integer linear problem and solved heuristically. Numerical results show that the power saving is significant, close to the theoretical minimum at low loads, and it comes with a tolerable extra dela

    A context-based approach for partitioning big data

    Get PDF
    In recent years, the amount of available data keeps growing at fast rate, and it is therefore crucial to be able to process them in an efficient way. The level of parallelism in tools such as Hadoop or Spark is determined, among other things, by the partitioning applied to the dataset. A common method is to split the data into chunks considering the number of bytes. While this approach may work well for text-based batch processing, there are a number of cases where the dataset contains structured information, such as the time or the spatial coordinates, and one may be interested in exploiting such a structure to improve the partitioning. This could have an impact on the processing time and increase the overall resource usage efficiency. This paper explores an approach based on the notion of context, such as temporal or spatial information, for partitioning the data. We design a context-based multi-dimensional partitioning technique that divides an n 12dimensional space into splits by considering the distribution of the each contextual dimension in the dataset. We tested our approach on a dataset from a touristic scenario, and our experiments show that we are able to improve the efficiency of the resource usage

    What is the role of context in fair group recommendations?

    Get PDF
    We investigate the role played by the context, i.e. the situation the group is currently experiencing, in the design of a system that recommends sequences of activities as a multi-objective optimization problem, where the satisfaction of the group and the available time interval are two of the functions to be optimized. In particular, we highlight that the dynamic evolution of the group can be the key contextual feature that has to be considered to produce fair suggestions

    Failed Surgery for Patellar Tendinopathy in Athletes: Midterm Results of Further Surgical Management

    Get PDF
    Background:Tendon injuries are commonly seen in sports medicine practice. Many elite players involved in high-impact activities develop patellar tendinopathy (PT) symptoms. Of them, a small percentage will develop refractory PT and need to undergo surgery. In some of these patients, surgery does not resolve these symptoms.Purpose:To report the clinical results in a cohort of athletes who underwent further surgery after failure of primary surgery for PT.Study Design:Case series; Level of evidence, 4.Methods:A total of 22 athletes who had undergone revision surgery for failed surgical management of PT were enrolled in the present study. Symptom severity was assessed through the Victorian Institute of Sport Assessment Scale for Patellar Tendinopathy (VISA-P) upon admission and at the final follow-up. Time to return to training, time to return to competition, and complications were also recorded.Results:The mean age of the athletes was 25.4 years, and the mean symptom duration from the index intervention was 15.3 months. At a mean follow-up of 30.0 +/- 4.9 months, the VISA-P score improved 27.8 points (P < .0001). The patients returned to training within a mean of 9.2 months. Fifteen patients (68.2%) returned to competition within a mean of 11.6 months. Of these 15 patients, a further 2 had decreased their performance, and 2 more had abandoned sports participation by the final follow-up. The overall rate of complications was 18.2%. One patient (4.5%) had a further revision procedure.Conclusion:Revision surgery was feasible and effective in patients in whom PT symptoms persisted after previous surgery for PT, achieving a statistically significant and clinically relevant improvement of the VISA-P score as well as an acceptable rate of return to sport at a follow-up of 30 months

    What makes spatial data big? A discussion on how to partition spatial data

    Get PDF
    The amount of available spatial data has significantly increased in the last years so that traditional analysis tools have become inappropriate to effectively manage them. Therefore, many attempts have been made in order to define extensions of existing MapReduce tools, such as Hadoop or Spark, with spatial capabilities in terms of data types and algorithms. Such extensions are mainly based on the partitioning techniques implemented for textual data where the dimension is given in terms of the number of occupied bytes. However, spatial data are characterized by other features which describe their dimension, such as the number of vertices or the MBR size of geometries, which greatly affect the performance of operations, like the spatial join, during data analysis. The result is that the use of traditional partitioning techniques prevents to completely exploit the benefit of the parallel execution provided by a MapReduce environment. This paper extensively analyses the problem considering the spatial join operation as use case, performing both a theoretical and an experimental analysis for it. Moreover, it provides a solution based on a different partitioning technique, which splits complex or extensive geometries. Finally, we validate the proposed solution by means of some experiments on synthetic and real datasets

    Differential structural remodelling of heparan sulfate by chemokines: the role of chemokine oligomerization

    Get PDF
    Chemokines control the migration of cells in normal physiological processes and in the context of disease such as inflammation, autoimmunity and cancer. Two major interactions are involved: (i) binding of chemokines to chemokine receptors, which activates the cellular machinery required for movement; and (ii) binding of chemokines to glycosaminoglycans (GAGs), which facilitates the organization of chemokines into haptotactic gradients that direct cell movement. Chemokines can bind and activate their receptors as monomers; however, the ability to oligomerize is critical for the function of many chemokines in vivo. Chemokine oligomerization is thought to enhance their affinity for GAGs, and here we show that it significantly affects the ability of chemokines to accumulate on and be retained by heparan sulfate (HS). We also demonstrate that several chemokines differentially rigidify and cross-link HS, thereby affecting HS rigidity and mobility, and that HS cross-linking is significantly enhanced by chemokine oligomerization. These findings suggest that chemokine–GAG interactions may play more diverse biological roles than the traditional paradigms of physical immobilization and establishment of chemokine gradients; we hypothesize that they may promote receptor-independent events such as physical re-organization of the endothelial glycocalyx and extracellular matrix, as well as signalling through proteoglycans to facilitate leukocyte adhesion and transmigration
    • …
    corecore