8,768 research outputs found
Challenges in measuring small joint movements: hand biomechanics and health technology assessment
Pinning an Ion with an Intracavity Optical Lattice
We report one-dimensional pinning of a single ion by an optical lattice. The
lattice potential is produced by a standing-wave cavity along the rf-field-free
axis of a linear Paul trap. The ion's localization is detected by measuring its
fluorescence when excited by standing-wave fields with the same period, but
different spatial phases. The experiments agree with an analytical model of the
localization process, which we test against numerical simulations. For the best
localization achieved, the ion's average coupling to the cavity field is
enhanced from 50% to 81(3)% of its maximum possible value, and we infer that
the ion is bound in a lattice well with over 97% probability.Comment: 5 pages, 4 figures; Text edited for clarity, results unchange
Two-Level Systems in Evaporated Amorphous Silicon
In -beam evaporated amorphous silicon (-Si), the densities of two-level
systems (TLS), and , determined from specific heat
and internal friction measurements, respectively, have been shown to
vary by over three orders of magnitude. Here we show that and
are proportional to each other with a constant of
proportionality that is consistent with the measurement time dependence
proposed by Black and Halperin and does not require the introduction of
additional anomalous TLS. However, and depend strongly
on the atomic density of the film () which depends on both film
thickness and growth temperature suggesting that the -Si structure is
heterogeneous with nanovoids or other lower density regions forming in a dense
amorphous network. A review of literature data shows that this atomic density
dependence is not unique to -Si. These findings suggest that TLS are not
intrinsic to an amorphous network but require a heterogeneous structure to
form
Coulomb crystallization in expanding laser-cooled neutral plasmas
We present long-time simulations of expanding ultracold neutral plasmas,
including a full treatment of the strongly coupled ion dynamics. Thereby, the
relaxation dynamics of the expanding laser-cooled plasma is studied, taking
into account elastic as well as inelastic collisions. It is demonstrated that,
depending on the initial conditions, the ionic component of the plasma may
exhibit short-range order or even a superimposed long-range order resulting in
concentric ion shells. In contrast to ionic plasmas confined in traps, the
shell structures are built up from the center of the plasma cloud rather than
from the periphery
Flux-ratio anomalies from discs and other baryonic structures in the Illustris simulation
The flux ratios in the multiple images of gravitationally lensed quasars can
provide evidence for dark matter substructure in the halo of the lensing galaxy
if the flux ratios differ from those predicted by a smooth model of the lensing
galaxy mass distribution. However, it is also possible that baryonic structures
in the lensing galaxy, such as edge-on discs, can produce flux-ratio anomalies.
In this work, we present the first statistical analysis of flux-ratio anomalies
due to baryons from a numerical simulation perspective. We select galaxies with
various morphological types in the Illustris simulation and ray-trace through
the simulated halos, which include baryons in the main lensing galaxies but
exclude any substructures, in order to explore the pure baryonic effects. Our
ray-tracing results show that the baryonic components can be a major
contribution to the flux-ratio anomalies in lensed quasars and that edge-on
disc lenses induce the strongest anomalies. We find that the baryonic
components increase the probability of finding high flux-ratio anomalies in the
early-type lenses by about 8% and by about 10 - 20% in the disc lenses. The
baryonic effects also induce astrometric anomalies in 13% of the mock lenses.
Our results indicate that the morphology of the lens galaxy becomes important
in the analysis of flux-ratio anomalies when considering the effect of baryons,
and that the presence of baryons may also partially explain the discrepancy
between the observed (high) anomaly frequency and what is expected due to the
presence of subhalos as predicted by the CDM simulations.Comment: 16 pages, 11 figures, accepted by MNRA
Laser cooling of new atomic and molecular species with ultrafast pulses
We propose a new laser cooling method for atomic species whose level
structure makes traditional laser cooling difficult. For instance, laser
cooling of hydrogen requires single-frequency vacuum-ultraviolet light, while
multielectron atoms need single-frequency light at many widely separated
frequencies. These restrictions can be eased by laser cooling on two-photon
transitions with ultrafast pulse trains. Laser cooling of hydrogen,
antihydrogen, and many other species appears feasible, and extension of the
technique to molecules may be possible.Comment: revision of quant-ph/0306099, submitted to PR
Laser Phase and Frequency Stabilization Using Atomic Coherence
We present a novel and simple method of stabilizing the laser phase and
frequency by polarization spectroscopy of an atomic vapor. In analogy to the
Pound-Drever-Hall method, which uses a cavity as a memory of the laser phase,
this method uses atomic coherence (dipole oscillations) as a phase memory of
the transmitting laser field. A preliminary experiment using a distributed
feedback laser diode and a rubidium vapor cell demonstrates a
shot-noise-limited laser linewidth reduction (from 2 MHz to 20 kHz). This
method would improve the performance of gas-cell-based optical atomic clocks
and magnetometers and facilitate laser-cooling experiments using narrow
transitions.Comment: 7 pages, 6 figures, appendix on the derivation of Eq.(3) (transfer
function for a polarization-spectroscopy-based frequency discriminator) has
been adde
Bio-economic evaluation of pasture-cropping, a novel system of integrating perennial pastures and crops on crop-livestock farms
Pasture-cropping is a novel approach to increase the area of perennial crops in mixed sheep and cropping systems. It involves planting annual cereals directly into a living perennial pasture. There is interest in subtropical grasses as they are winter dormant and their growth profile is potentially well suited to pasture-cropping. However, a wide range of factors can affect the uptake of such systems. This paper assesses the relative importance of factors that can influence decisions to introduce pasture-cropping. In this paper the research question is: what factors predispose a farm to take up a new technology such as (1) subtropical grass and (2) subtropical grass that is pasture-cropped. The analysis uses the MIDAS model of a central wheatbelt farm in Western Australia. The results suggest the adoption of subtropical grasses is likely to be strongly influenced by soil mix; feed quality; and whether the farm is predominantly grazing or cropping and by the presence of meat versus wool producing animals. The same factors are relevant for subtropical grass that is pasture-cropped but in addition yield penalties due to competition between the host perennial and the companion cereal become important. The results suggest the level of forage production by subtropical grass is less important but this factor is likely to become more important if feed quality can be improved.Environmental Economics and Policy,
Resonant enhancement of ultracold photoassociation rate by electric field induced anisotropic interaction
We study the effects of a static electric field on the photoassociation of a
heteronuclear atom-pair into a polar molecule. The interaction of permanent
dipole moment with a static electric field largely affects the ground state
continuum wave function of the atom-pair at short separations where
photoassociation transitions occur according to Franck-Condon principle.
Electric field induced anisotropic interaction between two heteronuclear ground
state atoms leads to scattering resonances at some specific electric fields.
Near such resonances the amplitude of scattering wave function at short
separation increases by several orders of magnitude. As a result,
photoaasociation rate is enhanced by several orders of magnitude near the
resonances. We discuss in detail electric field modified atom-atom scattering
properties and resonances. We calculate photoassociation rate that shows giant
enhancement due to electric field tunable anisotropic resonances. We present
selected results among which particularly important are the excitations of
higher rotational levels in ultracold photoassociation due to electric field
tunable resonances.Comment: 14 pages,9 figure
- …
