research

Resonant enhancement of ultracold photoassociation rate by electric field induced anisotropic interaction

Abstract

We study the effects of a static electric field on the photoassociation of a heteronuclear atom-pair into a polar molecule. The interaction of permanent dipole moment with a static electric field largely affects the ground state continuum wave function of the atom-pair at short separations where photoassociation transitions occur according to Franck-Condon principle. Electric field induced anisotropic interaction between two heteronuclear ground state atoms leads to scattering resonances at some specific electric fields. Near such resonances the amplitude of scattering wave function at short separation increases by several orders of magnitude. As a result, photoaasociation rate is enhanced by several orders of magnitude near the resonances. We discuss in detail electric field modified atom-atom scattering properties and resonances. We calculate photoassociation rate that shows giant enhancement due to electric field tunable anisotropic resonances. We present selected results among which particularly important are the excitations of higher rotational levels in ultracold photoassociation due to electric field tunable resonances.Comment: 14 pages,9 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions