We study the effects of a static electric field on the photoassociation of a
heteronuclear atom-pair into a polar molecule. The interaction of permanent
dipole moment with a static electric field largely affects the ground state
continuum wave function of the atom-pair at short separations where
photoassociation transitions occur according to Franck-Condon principle.
Electric field induced anisotropic interaction between two heteronuclear ground
state atoms leads to scattering resonances at some specific electric fields.
Near such resonances the amplitude of scattering wave function at short
separation increases by several orders of magnitude. As a result,
photoaasociation rate is enhanced by several orders of magnitude near the
resonances. We discuss in detail electric field modified atom-atom scattering
properties and resonances. We calculate photoassociation rate that shows giant
enhancement due to electric field tunable anisotropic resonances. We present
selected results among which particularly important are the excitations of
higher rotational levels in ultracold photoassociation due to electric field
tunable resonances.Comment: 14 pages,9 figure