1,580 research outputs found

    Ultrasound-assisted synthesis of copper-based catalysts for the electrocatalytic CO2 reduction: Effect of ultrasound irradiation, precursor concentration and calcination temperature

    Get PDF
    The reduction of high CO2 concentrations in the atmosphere is an imperative task to reduce the consequences of the greenhouse effect on our planet. Developing active and selective materials for electrochemical CO2 reduction towards value-added products is mandatory to bring this technology to a practical application. This work studied the effect of assisting Cu and Zn oxides co-precipitation with sonochemistry. Different factors were investigated: the ultrasounds (US) amplitude, the effect of US irradiation time during either precipitation or ageing processes, the precursor concentration and calcination temperature. The synthesised catalysts were tested for the electrocatalytic CO2 reduction reaction in a Rotating Disk Electrode (RDE) system. Faradaic efficiencies >14% towards alcohols were obtained using US-assisted synthesised Cu-based catalysts. Instead, with the US-prepared CupperZinc-based catalysts, the selectivity towards H-2 and C-1 products (CO and formate) was improved, and the syngas productivity was increased by >.1.4-fold compared to the non-sonicated one. The alcohols production of the best Cu-catalyst was also confirmed on scalable electrodes. Controlling the synthesis conditions allowed to tune the physicochemical properties of the nanoparticles, including specific surface area, porosity, crystallite size and phases. Mesoporous materials with a mean pores size of around 25 nm were found to induce a better CO2 diffusion and CO retention time in the porous network, improving the *CO intermediate adsorption at active sites, promoting its dimerisation and thus enhancing the selectivity towards C2+ alcohols. The here reported results open the way for new electrocatalysts designs with properly tuned porosity for the selective CO2 conversion to different valuable products

    CuZnAl-oxide nanopyramidal mesoporous materials for the electrocatalytic CO2 reduction to syngas: Tuning of H2/CO ratio

    Get PDF
    Inspired by the knowledge of the thermocatalytic CO2 reduction process, novel nanocrystalline CuZnAl-oxide based catalysts with pyramidal mesoporous structures are here proposed for the CO2 electrochemical reduction under ambient conditions. The XPS analyses revealed that the co-presence of ZnO and Al2O3 into the Cu-based catalyst stabilize the CuO crystalline structure and introduce basic sites on the ternary as-synthesized catalyst. In contrast, the as-prepared CuZn-and Cu-based materials contain a higher amount of superficial Cu0 and Cu1+ species. The CuZnAl-catalyst exhibited enhanced catalytic performance for the CO and H2 production, reaching a Faradaic efficiency (FE) towards syngas of almost 95% at −0.89 V vs. RHE and a remarkable current density of up to 90 mA cm−2 for the CO2 reduction at −2.4 V vs. RHE. The physico-chemical characterizations confirmed that the pyramidal mesoporous structure of this material, which is constituted by a high pore volume and small CuO crystals, plays a fundamental role in its low diffusional mass-transfer resistance. The CO-productivity on the CuZnAl-catalyst increased at more negative applied potentials, leading to the production of syngas with a tunable H2/CO ratio (from 2 to 7), depending on the applied potential. These results pave the way to substitute state-of-the-art noble metals (e.g., Ag, Au) with this abundant and cost-effective catalyst to produce syngas. Moreover, the post-reaction analyses demonstrated the stabilization of Cu2O species, avoiding its complete reduction to Cu0 under the CO2 electroreduction conditions

    Neonatal infrared thermography images in the hypothermic ruminant model: Anatomical-morphological-physiological aspects and mechanisms for thermoregulation

    Get PDF
    Hypothermia is one factor associated with mortality in newborn ruminants due to the drastic temperature change upon exposure to the extrauterine environment in the first hours after birth. Ruminants are precocial whose mechanisms for generating heat or preventing heat loss involve genetic characteristics, the degree of neurodevelopment at birth and environmental aspects. These elements combine to form a more efficient mechanism than those found in altricial species. Although the degree of neurodevelopment is an important advantage for these species, their greater mobility helps them to search for the udder and consume colostrum after birth. However, anatomical differences such as the distribution of adipose tissue or the presence of type II muscle fibers could lead to the understanding that these species use their energy resources more efficiently for heat production. The introduction of unconventional ruminant species, such as the water buffalo, has led to rethinking other characteristics like the skin thickness or the coat type that could intervene in the thermoregulation capacity of the newborn. Implementing tools to analyze species-specific characteristics that help prevent a critical decline in temperature is deemed a fundamental strategy for avoiding the adverse effects of a compromised thermoregulatory function. Although thermography is a non-invasive method to assess superficial temperature in several non-human animal species, in newborn ruminants there is limited information about its application, making it necessary to discuss the usefulness of this tool. This review aims to analyze the effects of hypothermia in newborn ruminants, their thermoregulation mechanisms that compensate for this condition, and the application of infrared thermography (IRT) to identify cases with hypothermia

    Magnetic field effect on the dielectric constant of glasses: Evidence of disorder within tunneling barriers

    Full text link
    The magnetic field dependence of the low frequency dielectric constant ere_r(H) of a structural glass a - SiO2 + xCyHz was studied from 400 mK to 50 mK and for H up to 3T. Measurement of both the real and the imaginary parts of ere_r is used to eliminate the difficult question of keeping constant the temperature of the sample while increasing H: a non-zero ere_r(H) dependence is reported in the same range as that one very recently reported on multicomponent glasses. In addition to the recently proposed explanation based on interactions, the reported ere_r(H) is interpreted quantitatively as a consequence of the disorder lying within the nanometric barriers of the elementary tunneling systems of the glass.Comment: latex Bcorrige1.tex, 5 files, 4 figures, 7 pages [SPEC-S02/009

    How to Be Unfaithful to Eurocentrism: A Spanglish Decolonial Critique to Knowledge Gentrification, Captivity and Storycide in Qualitative Research

    Get PDF
    From a position of academic activism, we critique the longstanding dominance del production of knowledge that solely implicates fidelity to Eurocentric methodological technologies en qualitative research. Influenced by an Andean decolonial perspective, en Spanglish we problematize métodos of analysis as the dominant research practice, whereby las stories o relatos result en su appropriation, captivity and gentrification, first by researchers’ authorship and later by the publishing industry copyrights. We highlight the racializing and capitalist colonial/modern Eurocentric agenda del current market of knowledge production that displaces to la periphery all knowledge o relatos that do not subscribe to Euro-US American methodological parameters of what counts as knowledge. Therefore, we intend to heighten the readers’ audibility of another possibility of knowing that does not come from Eurocentric methodologically produced stories. At the forefront of our critique, and as an introduction to a decolonial option, we include our written, uttered, and painted stories, with the political intent of social transformation of coloniality. These seek to denounce power structures that have had incarnated effects on our lives y comunidades. We intend to invite researchers to serve as witnesses of our experiences rather than as critics of methodological rigor. We include final commentaries on a decolonial project to rethink the unquestionable fidelity and dependency toward the current research order of things of el center and la periphery. This is so as to render European technologies of knowledge as only one alternative among many other possible means of legitimate knowledge making in qualitative research. We discuss our hope for epistemological coexistence by which fair and reciprocal intercultural translations of knowledge making could take place, not in the name of equality, but difference

    Solar-driven CO2 reduction catalysed by hybrid supramolecular photocathodes and enhanced by ionic liquids

    Get PDF
    Photoelectrochemical carbon dioxide reduction (CO2) at ambient temperature and pressure was performed using molecular chromophores and catalyst assemblies on CuGaO2-based electrodes in an ionic liquid (IL) organic solution, acting as a CO2 absorbent and electrolyte. A simple and versatile methodology based on the silanization of the CuGaO2 electrode followed by electropolymerization provided a series of molecular and supramolecular hybrid photocathodes for solar driven CO2 reduction. Focusing on the cathodic half reactions, the most promising conditions for the formation of CO2 reduction products were determined. The results revealed a beneficial effect of the ionic liquid on the conversion of CO2 to formic acid and suppression of the production of hydrogen. The potentiality of anchoring supramolecular complexes on semiconductor photoelectrocatalysts was demonstrated to boost both carrier transport and catalytic activity with a FEred of up to 81% compared with the obtained FEred of 52% using bare CuGaO2 with formate as the major product

    Magnetism of small V clusters embedded in a Cu fcc matrix: an ab initio study

    Full text link
    We present extensive first principles density functional theory (DFT) calculations dedicated to analyze the magnetic and electronic properties of small Vn_{n} clusters (n=1,2,3,4,5,6) embedded in a Cu fcc matrix. We consider different cluster structures such as: i) a single V impurity, ii) several V2_{2} dimers having different interatomic distance and varying local atomic environment, iii) V3_{3} and iv) V4_{4} clusters for which we assume compact as well as 2- and 1-dimensional atomic configurations and finally, in the case of the v) V5_{5} and vi) V6_{6} structures we consider a square pyramid and a square bipyramid together with linear arrays, respectively. In all cases, the V atoms are embedded as substitutional impurities in the Cu network. In general, and as in the free standing case, we have found that the V clusters tend to form compact atomic arrays within the cooper matrix. Our calculated non spin-polarized density of states at the V sites shows a complex peaked structure around the Fermi level that strongly changes as a function of both the interatomic distance and local atomic environment, a result that anticipates a non trivial magnetic behavior. In fact, our DFT calculations reveal, in each one of our clusters systems, the existence of different magnetic solutions (ferromagnetic, ferrimagnetic, and antiferromagnetic) with very small energy differences among them, a result that could lead to the existence of complex finite-temperature magnetic properties. Finally, we compare our results with recent experimental measurements.Comment: 7 pages and 4 figure

    Success of concrete and crab traps in facilitating Eastern oyster recruitment and reef development

    Get PDF
    Background Abundance of the commercially and ecologically important Eastern oyster, Crassostrea virginica, has declined across the US Eastern and Gulf coasts in recent decades, spurring substantial efforts to restore oyster reefs. These efforts are widely constrained by the availability, cost, and suitability of substrates to support oyster settlement and reef establishment. In particular, oyster shell is often the preferred substrate but is relatively scarce and increasingly expensive. Thus, there is a need for alternative oyster restoration materials that are cost-effective, abundant, and durable. Methods We tested the viability of two low-cost substrates—concrete and recycled blue crab (Callinectes sapidus) traps—in facilitating oyster recovery in a replicated 22-month field experiment at historically productive but now degraded intertidal oyster grounds on northwestern Florida’s Nature Coast. Throughout the trial, we monitored areal oyster cover on each substrate; at the end of the trial, we measured the densities of oysters by size class (spat, juvenile, and market-size) and the biomass and volume of each reef. Results Oysters colonized the concrete structures more quickly than the crab traps, as evidenced by significantly higher oyster cover during the first year of the experiment. By the end of the experiment, the concrete structures hosted higher densities of spat and juveniles, while the density of market-size oysters was relatively low and similar between treatments. The open structure of the crab traps led to the development of larger-volume reefs, while oyster biomass per unit area was similar between treatments. In addition, substrates positioned at lower elevations (relative to mean sea level) supported higher oyster abundance, size, and biomass than those less frequently inundated at higher elevations. Discussion Together, these findings indicate that both concrete and crab traps are viable substrates for oyster reef restoration, especially when placed at lower intertidal elevations conducive to oyster settlement and reef development

    Does abscisic acid affect strigolactone biosynthesis?

    Get PDF
    Strigolactones are considered a novel class of plant hormones that, in addition to their endogenous signalling function, are exuded into the rhizosphere acting as a signal to stimulate hyphal branching of arbuscular mycorrhizal (AM) fungi and germination of root parasitic plant seeds. Considering the importance of the strigolactones and their biosynthetic origin (from carotenoids), we investigated the relationship with the plant hormone abscisic acid (ABA). Strigolactone production and ABA content in the presence of specific inhibitors of oxidative carotenoid cleavage enzymes and in several tomato ABA-deficient mutants were analysed by LC-MS/MS. In addition, the expression of two genes involved in strigolactone biosynthesis was studied. * • The carotenoid cleavage dioxygenase (CCD) inhibitor D2 reduced strigolactone but not ABA content of roots. However, in abamineSG-treated plants, an inhibitor of 9-cis-epoxycarotenoid dioxygenase (NCED), and the ABA mutants notabilis, sitiens and flacca, ABA and strigolactones were greatly reduced. The reduction in strigolactone production correlated with the downregulation of LeCCD7 and LeCCD8 genes in all three mutants. * • The results show a correlation between ABA levels and strigolactone production, and suggest a role for ABA in the regulation of strigolactone biosynthesis
    • …
    corecore