471 research outputs found

    Sirtuins, bioageing, and cancer

    Get PDF
    The Sirtuins are a family of orthologues of yeast Sir2 found in a wide range of organisms from bacteria to man. They display a high degree of conservation between species, in both sequence and function, indicative of their key biochemical roles. Sirtuins are heavily implicated in cell cycle, cell division, transcription regulation, and metabolism, which places the various family members at critical junctures in cellular metabolism. Typically, Sirtuins have been implicated in the preservation of genomic stability and in the prolongation of lifespan though many of their target interactions remain unknown. Sirtuins play key roles in tumourigenesis, as some have tumour-suppressor functions and others influence tumours through their control of the metabolic state of the cell. Their links to ageing have also highlighted involvement in various age-related and degenerative diseases. Here, we discuss the current understanding of the role of Sirtuins in age-related diseases while taking a closer look at their roles and functions in maintaining genomic stability and their influence on telomerase and telomere function

    Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS)

    Get PDF
    This effort involves development of a calibrated, pulsed coherent CO2 Doppler lidar, followed by a carefully-planned and -executed program of multi-dimensional wind velocity and aerosol backscatter measurements from the NASA DC-8 research aircraft. The lidar, designated as the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS), will be applicable to two research areas. First, MACAWS will enable specialized measurements of atmospheric dynamical processes in the planetary boundary layer and free troposphere in geographic locations and over scales of motion not routinely or easily accessible to conventional sensors. The proposed observations will contribute fundamentally to a greater understanding of the role of the mesoscale, helping to improve predictive capabilities for mesoscale phenomena and to provide insights into improving model parameterizations of sub-grid scale processes within large-scale circulation models. As such, it has the potential to contribute uniquely to major, multi-institutional field programs planned for the mid 1990's. Second, MACAWS measurements can be used to reduce the degree of uncertainty in performance assessments and algorithm development for NASA's prospective Laser Atmospheric Wind Sounder (LAWS), which has no space-based instrument heritage. Ground-based lidar measurements alone are insufficient to address all of the key issues. To minimize costs, MACAWS is being developed cooperatively by the lidar remote sensing groups of the Jet Propulsion Laboratory, NOAA Wave Propagation Laboratory, and MSFC using existing lidar hardware and manpower resources. Several lidar components have already been exercised in previous airborne lidar programs (for example, MSFC Airborne Doppler Lidar System (ADLS) used in 1981,4 Severe Storms Wind Measurement Program; JPL Airborne Backscatter Lidar Experiment (ABLE) used in 1989,90 Global Backscatter Experiment Survey Missions). MSFC has been given responsibility for directing the overall program of instrument development and scientific measurement. The focus of current research and plans for next year are presented

    Atmospheric aerosol and Doppler lidar studies

    Get PDF
    Experimental and theoretical studies were performed of atmospheric aerosol backscatter and atmospheric dynamics with Doppler lidar as a primary tool. Activities include field and laboratory measurement and analysis efforts. The primary focus of activities related to understanding aerosol backscatter is the GLObal Backscatter Experiment (GLOBE) program. GLOBE is a multi-element effort designed toward developing a global aerosol model to describe tropospheric clean background backscatter conditions that Laser Atmospheric Wind Sounder (LAWS) is likely to encounter. Two survey missions were designed and flown in the NASA DC-8 in November 1989 and May to June 1990 over the remote Pacific Ocean, a region where backscatter values are low and where LAWS wind measurements could make a major contribution. The instrument complement consisted of pulsed and continuous-wave (CW) CO2 gas and solid state lidars measuring aerosol backscatter, optical particle counters measuring aerosol concentration, size distribution, and chemical composition, a filter/impactor system collecting aerosol samples for subsequent analysis, and integrating nephelometers measuring visible scattering coefficients. The GLOBE instrument package and survey missions were carefully planned to achieve complementary measurements under clean background backscatter conditions

    Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    Get PDF
    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments

    Workmen’s compensation for occupational hand injuries

    Get PDF
    Background. The Compensation for Occupational Injuries and Diseases Act No. 130 of 1993, as amended in 1997 (COIDA), provides payment to healthcare providers for treatment of occupational injuries in South Africa (SA). Patients and employers are often unaware of procedures for claiming, and patients then carry the burden of costs themselves. Additionally, under-billing results in a loss of income for treating hospitals. Hand injuries are common occupational injuries and form the focus of this study.Objectives. To investigate whether occupational hand injuries treated at the Martin Singer Hand Unit at Groote Schuur Hospital, Cape Town, were accurately captured and allocated correct professional fee coding and billing. Accurate capturing and billing would allow for access to the Compensation Fund and allocation of finances to improve service delivery, as well as avoid unnecessary costs to otherwise uninsured patients.Methods. All new hand injuries presenting to the hand unit at the hospital in August 2017 were sampled in a retrospective folder review. Injuries on duty (IODs) were identified and analysed further. Coding and billing were compared with independent private quotes.Results. Sixty new hand injuries presented during the month. Fifteen were IODs, but only 6 were recognised by administration. The other 9 were billed at minimum income rates and 5 of these patients also had operations, which were not billed for. A total of ZAR88 871.99 was under-billed in terms of professional fees only. The 9 incorrectly classified patients had to bear costs themselves at a median of ZAR130.00 each.Conclusions. There were large discrepancies in billing for occupational hand injuries. This resulted in costs to the patients and loss of income for the facility. Access to the Compensation Fund is vital in financing resources in the overburdened public sector. Suggestions for improvement include accessing COIDA funds in order to improve administration at the unit, so improving identification, coding and billing of occupational hand injuries.

    High-sensitivity cardiac troponin I improves cardiovascular risk prediction in older men: HIMS (The Health in Men Study)

    Get PDF
    Background: The Framingham Risk Score estimates the 10-year risk of cardiovascular events. However, it performs poorly in older adults. We evaluated the incremental benefit of adding high-sensitivity cardiac troponin I (hs-cTnI) to the Framingham Risk Score. Methods and Results: The HIMS (Health in Men Study) is a cohort study of community-dwelling men aged 70 to 89 years in Western Australia. Participants were identified from the electoral roll, with a subset undergoing plasma analysis. Hs-cTnI (Abbott Architect i2000SR) was measured in 1151 men without prior cardiovascular disease. The Western Australia Data Linkage System was used to identify incident cardiovascular events. After 10 years of follow-up, 252 men (22%) had a cardiovascular event (CVE+) and 899 did not (CVE–). The Framingham Risk Score placed 148 (59%) CVE+ and 415 (46%) CVE– in the high-risk category. In CVE– men, adding hs-cTnI affected the risk categories of 244 (27.2%) men, with 64.8% appropriately reclassified to a lower and 35.2% to a higher category, which decreased the number of high-risk men in the CVE– to 39%. In CVE+ men, adding hs-cTnI affected the risk categories of 61 (24.2%), with 50.8% appropriately reclassified to a higher and 49.2% to a lower category and 82.5% remaining above the 15% risk treatment threshold. The net reclassification index was 0.305 (P<0.001). Adding hs-cTnI increased the C-statistic modestly from 0.588 (95% CI, 0.552–0.624) to 0.624 (95% CI, 0.589–0.659) and improved model fit (likelihood ratio test, P<0.001). Conclusions: Adding hs-cTnI to the Framingham Risk Score provided incremental prognostic benefit in older men, especially aiding reclassification of individuals into a lower risk category

    GOES-R Geostationary Lightning Mapper Performance Specifications and Algorithms

    Get PDF
    The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series will carry a GLM that will provide continuous day and night observations of lightning. The mission objectives for the GLM are to: (1) Provide continuous, full-disk lightning measurements for storm warning and nowcasting, (2) Provide early warning of tornadic activity, and (2) Accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997- present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. The science data will consist of lightning "events", "groups", and "flashes". The algorithm is being designed to be an efficient user of the computational resources. This may include parallelization of the code and the concept of sub-dividing the GLM FOV into regions to be processed in parallel. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama, Oklahoma, Central Florida, and the Washington DC Metropolitan area) are being used to develop the prelaunch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution
    corecore