806 research outputs found

    Ocean services user needs assessment. Volume 1: Survey results, conclusions and recommendations

    Get PDF
    An interpretation of environmental information needs of marine users, derived from a direct contact survey of eight important sectors of the marine user community is presented. Findings of the survey and results and recommendations are reported. The findings consist of specific and quantized measurement and derived product needs for each sector and comparisons of these needs with current and planned NOAA data and services. The following supportive and reference material are examined: direct contact interviews with industry members, analyses of current NOAA data gathering and derived product capabilities, evaluations of new and emerging domestic and foreign satellite data gathering capabilities, and a special commercial fishing survey conducted by the Jet Propulsion Laboratory (JPL)

    Operations management system

    Get PDF
    The objective of an operations management system is to provide an orderly and efficient method to operate and maintain aerospace vehicles. Concepts are described for an operations management system and the key technologies are highlighted which will be required if this capability is brought to fruition. Without this automation and decision aiding capability, the growing complexity of avionics will result in an unmanageable workload for the operator, ultimately threatening mission success or survivability of the aircraft or space system. The key technologies include expert system application to operational tasks such as replanning, equipment diagnostics and checkout, global system management, and advanced man machine interfaces. The economical development of operations management systems, which are largely software, will require advancements in other technological areas such as software engineering and computer hardware

    Laserlight visual cueing device for freezing of gait in Parkinson's disease: a case study of the biomechanics involved

    Get PDF
    AbstractBackground: Freezing of gait (FOG) is a serious gait disorder affecting up to two-thirds of people with Parkinson's disease (PD). Cueing has been explored as a method of generating motor execution using visual transverse lines on the floor. However, the impact of a laser light visual cue remains unclear. Objective: To determine the biomechanical effect of a laser cane on FOG in a participant with PD compared to a healthy age- and gender-matched control. Methods: The participant with PD and healthy control were given a task of initiating gait from standing. Electromyography (EMG) data were collected from the tibialis anterior (TA) and the medial gastrocnemius (GS) muscles using an 8-channel system. A 10-camera system (Qualisys) recorded movement in 6 degrees of freedom and a calibrated anatomical system technique was used to construct a full body model. Center of mass (COM) and center of pressure (COP) were the main outcome measures. Results: The uncued condition showed that separation of COM and COP took longer and was of smaller magnitude than the cued condition. EMG activity revealed prolonged activation of GS, with little to no TA activity. The cued condition showed earlier COM and COP separation. There was reduced fluctuation in GS, with abnormal, early bursts of TA activity. Step length improved in the cued condition compared to the uncued condition. Conclusion: Laserlight visual cueing improved step length beyond a non-cued condition for this patient indicating improved posture and muscle control

    Origin of the butterfly magnetoresistance in a Dirac nodal-line system

    Full text link
    We report a study on the magnetotransport properties and on the Fermi surfaces (FS) of the ZrSi(Se,Te) semimetals. Density Functional Theory (DFT) calculations, in absence of spin orbit coupling (SOC), reveal that both the Se and the Te compounds display Dirac nodal lines (DNL) close to the Fermi level εF\varepsilon_F at symmorphic and non-symmorphic positions, respectively. We find that the geometry of their FSs agrees well with DFT predictions. ZrSiSe displays low residual resistivities, pronounced magnetoresistivity, high carrier mobilities, and a butterfly-like angle-dependent magnetoresistivity (AMR), although its DNL is not protected against gap opening. As in Cd3_3As2_2, its transport lifetime is found to be 102^2 to 103^3 times larger than its quantum one. ZrSiTe, which possesses a protected DNL, displays conventional transport properties. Our evaluation indicates that both compounds most likely are topologically trivial. Nearly angle-independent effective masses with strong angle dependent quantum lifetimes lead to the butterfly AMR in ZrSiSe

    Hypervelocity Impact Performance of 3D Printed Aluminum Panels

    Get PDF
    With the continued development of additive manufacturing methods, control over the shape of ligaments, cell regularity, and macroscopic shape can all be easily tuned. This capability allows for tailoring of component architecture and promotes potential mass savings in a space vehicle structure. Additionally, it allows one the flexibility of combining structural elements such as MMOD protection and vehicle stiffness for launch loads for an overall mass reduction. At NASA JSC this technology is being explored in many different ways with the goal being a multifunctional structural component. For this study, four different types of aluminum panels have been 3D printed for testing, three being of a body centric cubic (BCC) lattice structure core and one being kelvin cell structure core. All samples have a 5.33 cm (0.05) nominally thick aluminum face sheet printed on the front and back side of each panel, with all core materials having a 5.08 cm (2.0) nominal thickness (see Table 1 for test sample summary and Figures 1 2 for sample illustrations). These tests will evaluate the performance of 3D printed aluminum panels under hypervelocity impact (HVI) conditions. The hypervelocity impact tests are being conducted at the JSC White Sands Test Facility (WSTF) Remote Hypervelocity Test Laboratory (RHTL), located in Las Cruces, New Mexico. All tests will be conducted with a 3.4mm Al 2017-T4 sphere at 6.8 km/s impacting at 0 to surface normal (i.e., impacting with no obliquity). Each sample will be trapped between two metal frames, with gasket material residing between the sample and frame, which will be the shipping and testing configuration for all tests. There will be an Al 2017-T4 witness plate staged 5.08 cm (2.0) from each sample to capture signature of debris, if the rear face sheet of the sample were to perforate from the HVI test event

    Enhanced sphingosine-1-phosphate receptor 2 expression underlies female CNS autoimmunity susceptibility

    Get PDF
    Multiple sclerosis (MS) is an inflammatory disease of the CNS that is characterized by BBB dysfunction and has a much higher incidence in females. Compared with other strains of mice, EAE in the SJL mouse strain models multiple features of MS, including an enhanced sensitivity of female mice to disease; however, the molecular mechanisms that underlie the sex- and strain-dependent differences in disease susceptibility have not been described. We identified sphingosine-1-phosphate receptor 2 (S1PR2) as a sex- and strain-specific, disease-modifying molecule that regulates BBB permeability by destabilizing adherens junctions. S1PR2 expression was increased in disease-susceptible regions of the CNS of both female SJL EAE mice and female patients with MS compared with their male counterparts. Pharmacological blockade or lack of S1PR2 signaling decreased EAE disease severity as the result of enhanced endothelial barrier function. Enhanced S1PR2 signaling in an in vitro BBB model altered adherens junction formation via activation of Rho/ROCK, CDC42, and caveolin endocytosis-dependent pathways, resulting in loss of apicobasal polarity and relocation of abluminal CXCL12 to vessel lumina. Furthermore, S1PR2-dependent BBB disruption and CXCL12 relocation were observed in vivo. These results identify a link between S1PR2 signaling and BBB polarity and implicate S1PR2 in sex-specific patterns of disease during CNS autoimmunity
    corecore